{"title":"具有无界单调率的平均场零范围过程:混合时间、截止时间和庞卡罗常数","authors":"Hong-Quan Tran","doi":"10.1214/22-aap1851","DOIUrl":null,"url":null,"abstract":"We consider the mean-field Zero-Range process in the regime where the potential function $r$ is increasing to infinity at sublinear speed, and the density of particles is bounded. We determine the mixing time of the system, and establish cutoff. We also prove that the Poincare constant is bounded away from zero and infinity. This mean-field estimate extends to arbitrary geometries via a comparison argument. Our proof uses the path-coupling method of Bubley and Dyer and stochastic calculus.","PeriodicalId":50979,"journal":{"name":"Annals of Applied Probability","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2021-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The mean-field zero-range process with unbounded monotone rates: Mixing time, cutoff, and Poincaré constant\",\"authors\":\"Hong-Quan Tran\",\"doi\":\"10.1214/22-aap1851\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the mean-field Zero-Range process in the regime where the potential function $r$ is increasing to infinity at sublinear speed, and the density of particles is bounded. We determine the mixing time of the system, and establish cutoff. We also prove that the Poincare constant is bounded away from zero and infinity. This mean-field estimate extends to arbitrary geometries via a comparison argument. Our proof uses the path-coupling method of Bubley and Dyer and stochastic calculus.\",\"PeriodicalId\":50979,\"journal\":{\"name\":\"Annals of Applied Probability\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Applied Probability\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/22-aap1851\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Applied Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/22-aap1851","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
The mean-field zero-range process with unbounded monotone rates: Mixing time, cutoff, and Poincaré constant
We consider the mean-field Zero-Range process in the regime where the potential function $r$ is increasing to infinity at sublinear speed, and the density of particles is bounded. We determine the mixing time of the system, and establish cutoff. We also prove that the Poincare constant is bounded away from zero and infinity. This mean-field estimate extends to arbitrary geometries via a comparison argument. Our proof uses the path-coupling method of Bubley and Dyer and stochastic calculus.
期刊介绍:
The Annals of Applied Probability aims to publish research of the highest quality reflecting the varied facets of contemporary Applied Probability. Primary emphasis is placed on importance and originality.