{"title":"基于模糊模型的增材制造部件测试与鉴定设计","authors":"O. Borgue, M. Panarotto, O. Isaksson","doi":"10.1017/dsj.2022.6","DOIUrl":null,"url":null,"abstract":"Abstract The uncertainties and variation of additive manufacturing (AM) material properties and their impact on product quality trouble designers. The lack of experience in AM technologies renders the experts’ assessment of AM components and the establishment of safety margins difficult. Consequently, unexpected qualification difficulties resulting in expensive and lengthy redesign processes might arise. To reduce the risk of qualification failure, engineers might perform copious time-consuming and expensive specimen testing in early phases, or establish overconservative design margins, overriding the weight reduction benefits of AM technologies. In this article, a model-based design method is proposed for the conceptual design of AM space components with affordable test phases. The method utilizes fuzzy logics to systematically account for experts’ assessment of AM properties variation, and to provide an early estimation of a product qualification likelihood related to design parameters of interest, without the need for copious testing. The estimation of qualification likelihood can also point out which are the unique AM material uncertainties that require further specific testing, to enable the design of a product with a better performance and more affordable test phases. The method is demonstrated with the design for AM gridded of ion thrusters for satellite applications.","PeriodicalId":54146,"journal":{"name":"Design Science","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2022-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fuzzy model-based design for testing and qualification of additive manufacturing components\",\"authors\":\"O. Borgue, M. Panarotto, O. Isaksson\",\"doi\":\"10.1017/dsj.2022.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The uncertainties and variation of additive manufacturing (AM) material properties and their impact on product quality trouble designers. The lack of experience in AM technologies renders the experts’ assessment of AM components and the establishment of safety margins difficult. Consequently, unexpected qualification difficulties resulting in expensive and lengthy redesign processes might arise. To reduce the risk of qualification failure, engineers might perform copious time-consuming and expensive specimen testing in early phases, or establish overconservative design margins, overriding the weight reduction benefits of AM technologies. In this article, a model-based design method is proposed for the conceptual design of AM space components with affordable test phases. The method utilizes fuzzy logics to systematically account for experts’ assessment of AM properties variation, and to provide an early estimation of a product qualification likelihood related to design parameters of interest, without the need for copious testing. The estimation of qualification likelihood can also point out which are the unique AM material uncertainties that require further specific testing, to enable the design of a product with a better performance and more affordable test phases. The method is demonstrated with the design for AM gridded of ion thrusters for satellite applications.\",\"PeriodicalId\":54146,\"journal\":{\"name\":\"Design Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Design Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/dsj.2022.6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Design Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/dsj.2022.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Fuzzy model-based design for testing and qualification of additive manufacturing components
Abstract The uncertainties and variation of additive manufacturing (AM) material properties and their impact on product quality trouble designers. The lack of experience in AM technologies renders the experts’ assessment of AM components and the establishment of safety margins difficult. Consequently, unexpected qualification difficulties resulting in expensive and lengthy redesign processes might arise. To reduce the risk of qualification failure, engineers might perform copious time-consuming and expensive specimen testing in early phases, or establish overconservative design margins, overriding the weight reduction benefits of AM technologies. In this article, a model-based design method is proposed for the conceptual design of AM space components with affordable test phases. The method utilizes fuzzy logics to systematically account for experts’ assessment of AM properties variation, and to provide an early estimation of a product qualification likelihood related to design parameters of interest, without the need for copious testing. The estimation of qualification likelihood can also point out which are the unique AM material uncertainties that require further specific testing, to enable the design of a product with a better performance and more affordable test phases. The method is demonstrated with the design for AM gridded of ion thrusters for satellite applications.