部分观测的贝叶斯反问题

IF 0.3 Q4 MATHEMATICS
Shota Gugushvili, Aad W. van der Vaart, Dong Yan
{"title":"部分观测的贝叶斯反问题","authors":"Shota Gugushvili,&nbsp;Aad W. van der Vaart,&nbsp;Dong Yan","doi":"10.1016/j.trmi.2018.09.002","DOIUrl":null,"url":null,"abstract":"<div><p>We study a nonparametric Bayesian approach to linear inverse problems under discrete observations. We use the discrete Fourier transform to convert our model into a truncated Gaussian sequence model, that is closely related to the classical Gaussian sequence model. Upon placing the truncated series prior on the unknown parameter, we show that as the number of observations <span><math><mi>n</mi><mo>→</mo><mi>∞</mi><mo>,</mo></math></span> the corresponding posterior distribution contracts around the true parameter at a rate depending on the smoothness of the true parameter and the prior, and the ill-posedness degree of the problem. Correct combinations of these values lead to optimal posterior contraction rates (up to logarithmic factors). Similarly, the frequentist coverage of Bayesian credible sets is shown to be dependent on a combination of smoothness of the true parameter and the prior, and the ill-posedness of the problem. Oversmoothing priors lead to zero coverage, while undersmoothing priors produce highly conservative results. Finally, we illustrate our theoretical results by numerical examples.</p></div>","PeriodicalId":43623,"journal":{"name":"Transactions of A Razmadze Mathematical Institute","volume":"172 3","pages":"Pages 388-403"},"PeriodicalIF":0.3000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.trmi.2018.09.002","citationCount":"4","resultStr":"{\"title\":\"Bayesian inverse problems with partial observations\",\"authors\":\"Shota Gugushvili,&nbsp;Aad W. van der Vaart,&nbsp;Dong Yan\",\"doi\":\"10.1016/j.trmi.2018.09.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study a nonparametric Bayesian approach to linear inverse problems under discrete observations. We use the discrete Fourier transform to convert our model into a truncated Gaussian sequence model, that is closely related to the classical Gaussian sequence model. Upon placing the truncated series prior on the unknown parameter, we show that as the number of observations <span><math><mi>n</mi><mo>→</mo><mi>∞</mi><mo>,</mo></math></span> the corresponding posterior distribution contracts around the true parameter at a rate depending on the smoothness of the true parameter and the prior, and the ill-posedness degree of the problem. Correct combinations of these values lead to optimal posterior contraction rates (up to logarithmic factors). Similarly, the frequentist coverage of Bayesian credible sets is shown to be dependent on a combination of smoothness of the true parameter and the prior, and the ill-posedness of the problem. Oversmoothing priors lead to zero coverage, while undersmoothing priors produce highly conservative results. Finally, we illustrate our theoretical results by numerical examples.</p></div>\",\"PeriodicalId\":43623,\"journal\":{\"name\":\"Transactions of A Razmadze Mathematical Institute\",\"volume\":\"172 3\",\"pages\":\"Pages 388-403\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.trmi.2018.09.002\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of A Razmadze Mathematical Institute\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2346809218300394\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of A Razmadze Mathematical Institute","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2346809218300394","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

研究离散观测下线性反问题的非参数贝叶斯方法。我们使用离散傅里叶变换将我们的模型转换成一个截断的高斯序列模型,该模型与经典高斯序列模型密切相关。在将截断的序列先验放置在未知参数上时,我们表明,当观测数n→∞时,相应的后验分布围绕真参数收缩,其速度取决于真参数和先验的平滑程度以及问题的病态性程度。这些值的正确组合导致最佳后验收缩率(高达对数因子)。类似地,贝叶斯可信集的频率覆盖被证明依赖于真参数和先验的平滑性以及问题的病态性的组合。过平滑先验导致零覆盖,而欠平滑先验产生高度保守的结果。最后,通过数值算例对理论结果进行了说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesian inverse problems with partial observations

We study a nonparametric Bayesian approach to linear inverse problems under discrete observations. We use the discrete Fourier transform to convert our model into a truncated Gaussian sequence model, that is closely related to the classical Gaussian sequence model. Upon placing the truncated series prior on the unknown parameter, we show that as the number of observations n, the corresponding posterior distribution contracts around the true parameter at a rate depending on the smoothness of the true parameter and the prior, and the ill-posedness degree of the problem. Correct combinations of these values lead to optimal posterior contraction rates (up to logarithmic factors). Similarly, the frequentist coverage of Bayesian credible sets is shown to be dependent on a combination of smoothness of the true parameter and the prior, and the ill-posedness of the problem. Oversmoothing priors lead to zero coverage, while undersmoothing priors produce highly conservative results. Finally, we illustrate our theoretical results by numerical examples.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.50
自引率
50.00%
发文量
0
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信