模空间中泛函方程Hyers-Ulam-Rassias稳定性问题的不动点逼近

Q4 Mathematics
P. Saha, P. Mondal, Binayak S. Chqudhury
{"title":"模空间中泛函方程Hyers-Ulam-Rassias稳定性问题的不动点逼近","authors":"P. Saha, P. Mondal, Binayak S. Chqudhury","doi":"10.2478/tmmp-2021-0005","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we consider pexiderized functional equations for studying their Hyers-Ulam-Rassias stability. This stability has been studied for a variety of mathematical structures. Our framework of discussion is a modular space. We adopt a fixed-point approach to the problem in which we use a generalized contraction mapping principle in modular spaces. The result is illustrated with an example.","PeriodicalId":38690,"journal":{"name":"Tatra Mountains Mathematical Publications","volume":"78 1","pages":"59 - 72"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Fixed Point Approach to the Hyers-Ulam-Rassias Stability Problem of Pexiderized Functional Equation in Modular Spaces\",\"authors\":\"P. Saha, P. Mondal, Binayak S. Chqudhury\",\"doi\":\"10.2478/tmmp-2021-0005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we consider pexiderized functional equations for studying their Hyers-Ulam-Rassias stability. This stability has been studied for a variety of mathematical structures. Our framework of discussion is a modular space. We adopt a fixed-point approach to the problem in which we use a generalized contraction mapping principle in modular spaces. The result is illustrated with an example.\",\"PeriodicalId\":38690,\"journal\":{\"name\":\"Tatra Mountains Mathematical Publications\",\"volume\":\"78 1\",\"pages\":\"59 - 72\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tatra Mountains Mathematical Publications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/tmmp-2021-0005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tatra Mountains Mathematical Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/tmmp-2021-0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文利用聚醚化泛函方程研究其Hyers-Ulam-Rassias稳定性。这种稳定性已经在各种数学结构中得到了研究。我们讨论的框架是一个模块化空间。利用模空间中的广义收缩映射原理,采用不动点方法来解决该问题。最后通过一个算例说明了结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Fixed Point Approach to the Hyers-Ulam-Rassias Stability Problem of Pexiderized Functional Equation in Modular Spaces
Abstract In this paper, we consider pexiderized functional equations for studying their Hyers-Ulam-Rassias stability. This stability has been studied for a variety of mathematical structures. Our framework of discussion is a modular space. We adopt a fixed-point approach to the problem in which we use a generalized contraction mapping principle in modular spaces. The result is illustrated with an example.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tatra Mountains Mathematical Publications
Tatra Mountains Mathematical Publications Mathematics-Mathematics (all)
CiteScore
1.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信