2019冠状病毒病大流行期间土耳其劳动力市场:k模式分析

Bige Kucukefe, Nilüfer Kaya Kanlı
{"title":"2019冠状病毒病大流行期间土耳其劳动力市场:k模式分析","authors":"Bige Kucukefe, Nilüfer Kaya Kanlı","doi":"10.24988/ije.1096088","DOIUrl":null,"url":null,"abstract":"The COVID-19 pandemic has caused significant economic contractions and employment vulnerabilities for the economies, including Turkey. The pandemic exacerbated structural challenges related to high unemployment, low labor force participation, and widespread informality. This study aims to analyze the differences in the labor market between the 2019 and 2020 years in Turkey. For this purpose, we used the clustering method. While applying the clustering method, we used education type, gender, and age group data. Moreover, the study also employed information from employed, unemployed, and not in labor force data. We implemented a Machine Learning method, K-modes analysis, using the Turkish Statistical Institute's employment statistics and Labor Force Statistics Micro Datasets for 2019 and 2020.","PeriodicalId":33605,"journal":{"name":"Izmir Iktisat Dergisi","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Turkey’s Labor Market During Covid-19 Pandemic: A K-Modes Analysis\",\"authors\":\"Bige Kucukefe, Nilüfer Kaya Kanlı\",\"doi\":\"10.24988/ije.1096088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The COVID-19 pandemic has caused significant economic contractions and employment vulnerabilities for the economies, including Turkey. The pandemic exacerbated structural challenges related to high unemployment, low labor force participation, and widespread informality. This study aims to analyze the differences in the labor market between the 2019 and 2020 years in Turkey. For this purpose, we used the clustering method. While applying the clustering method, we used education type, gender, and age group data. Moreover, the study also employed information from employed, unemployed, and not in labor force data. We implemented a Machine Learning method, K-modes analysis, using the Turkish Statistical Institute's employment statistics and Labor Force Statistics Micro Datasets for 2019 and 2020.\",\"PeriodicalId\":33605,\"journal\":{\"name\":\"Izmir Iktisat Dergisi\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Izmir Iktisat Dergisi\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24988/ije.1096088\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izmir Iktisat Dergisi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24988/ije.1096088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

2019冠状病毒病大流行给包括土耳其在内的经济体造成了严重的经济收缩和就业脆弱性。这一流行病加剧了与高失业率、低劳动力参与率和普遍非正规性有关的结构性挑战。本研究旨在分析2019年和2020年土耳其劳动力市场的差异。为此,我们使用了聚类方法。在应用聚类方法时,我们使用了教育类型、性别和年龄组数据。此外,该研究还采用了在职、失业和非劳动力数据中的信息。我们使用土耳其统计研究所2019年和2020年的就业统计和劳动力统计微观数据集,实施了机器学习方法,k模式分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Turkey’s Labor Market During Covid-19 Pandemic: A K-Modes Analysis
The COVID-19 pandemic has caused significant economic contractions and employment vulnerabilities for the economies, including Turkey. The pandemic exacerbated structural challenges related to high unemployment, low labor force participation, and widespread informality. This study aims to analyze the differences in the labor market between the 2019 and 2020 years in Turkey. For this purpose, we used the clustering method. While applying the clustering method, we used education type, gender, and age group data. Moreover, the study also employed information from employed, unemployed, and not in labor force data. We implemented a Machine Learning method, K-modes analysis, using the Turkish Statistical Institute's employment statistics and Labor Force Statistics Micro Datasets for 2019 and 2020.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
58
审稿时长
52 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信