{"title":"基于K-支持向量最近邻的手写体字符识别","authors":"Aditya Surya Wijaya, N. Chamidah, M. M. Santoni","doi":"10.22146/IJEIS.38729","DOIUrl":null,"url":null,"abstract":"Handwritten characters are difficult to be recognized by machine because people had various own writing style. This research recognizes handwritten character pattern of numbers and alphabet using K-Nearest Neighbour (KNN) algorithm. Handwritten recognition process is worked by preprocessing handwritten image, segmentation to obtain separate single characters, feature extraction, and classification. Features extraction is done by utilizing Zone method that will be used for classification by splitting this features data to training data and testing data. Training data from extracted features reduced by K-Support Vector Nearest Neighbor (K-SVNN) and for recognizing handwritten pattern from testing data, we used K-Nearest Neighbor (KNN). Testing result shows that reducing training data using K-SVNN able to improve handwritten character recognition accuracy.","PeriodicalId":31590,"journal":{"name":"IJEIS Indonesian Journal of Electronics and Instrumentation Systems","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Pengenalan Karakter Tulisan Tangan Dengan K-Support Vector Nearest Neighbor\",\"authors\":\"Aditya Surya Wijaya, N. Chamidah, M. M. Santoni\",\"doi\":\"10.22146/IJEIS.38729\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Handwritten characters are difficult to be recognized by machine because people had various own writing style. This research recognizes handwritten character pattern of numbers and alphabet using K-Nearest Neighbour (KNN) algorithm. Handwritten recognition process is worked by preprocessing handwritten image, segmentation to obtain separate single characters, feature extraction, and classification. Features extraction is done by utilizing Zone method that will be used for classification by splitting this features data to training data and testing data. Training data from extracted features reduced by K-Support Vector Nearest Neighbor (K-SVNN) and for recognizing handwritten pattern from testing data, we used K-Nearest Neighbor (KNN). Testing result shows that reducing training data using K-SVNN able to improve handwritten character recognition accuracy.\",\"PeriodicalId\":31590,\"journal\":{\"name\":\"IJEIS Indonesian Journal of Electronics and Instrumentation Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IJEIS Indonesian Journal of Electronics and Instrumentation Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22146/IJEIS.38729\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJEIS Indonesian Journal of Electronics and Instrumentation Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22146/IJEIS.38729","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Pengenalan Karakter Tulisan Tangan Dengan K-Support Vector Nearest Neighbor
Handwritten characters are difficult to be recognized by machine because people had various own writing style. This research recognizes handwritten character pattern of numbers and alphabet using K-Nearest Neighbour (KNN) algorithm. Handwritten recognition process is worked by preprocessing handwritten image, segmentation to obtain separate single characters, feature extraction, and classification. Features extraction is done by utilizing Zone method that will be used for classification by splitting this features data to training data and testing data. Training data from extracted features reduced by K-Support Vector Nearest Neighbor (K-SVNN) and for recognizing handwritten pattern from testing data, we used K-Nearest Neighbor (KNN). Testing result shows that reducing training data using K-SVNN able to improve handwritten character recognition accuracy.