扩张面及其Veech基团

IF 0.7 1区 数学 Q2 MATHEMATICS
E. Duryev, C. Fougeron, Selim Ghazouani
{"title":"扩张面及其Veech基团","authors":"E. Duryev, C. Fougeron, Selim Ghazouani","doi":"10.3934/JMD.2019005","DOIUrl":null,"url":null,"abstract":"We introduce a class of objects which we call 'dilation surfaces'. These provide families of foliations on surfaces whose dynamics we are interested in. We present and analyze a couple of examples, and we define concepts related to these in order to motivate several questions and open problems. In particular we generalize the notion of Veech group to dilation surfaces, and we prove a structure result about these Veech groups.","PeriodicalId":51087,"journal":{"name":"Journal of Modern Dynamics","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2019-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Dilation surfaces and their Veech groups\",\"authors\":\"E. Duryev, C. Fougeron, Selim Ghazouani\",\"doi\":\"10.3934/JMD.2019005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a class of objects which we call 'dilation surfaces'. These provide families of foliations on surfaces whose dynamics we are interested in. We present and analyze a couple of examples, and we define concepts related to these in order to motivate several questions and open problems. In particular we generalize the notion of Veech group to dilation surfaces, and we prove a structure result about these Veech groups.\",\"PeriodicalId\":51087,\"journal\":{\"name\":\"Journal of Modern Dynamics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2019-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Modern Dynamics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/JMD.2019005\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modern Dynamics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/JMD.2019005","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 8

摘要

我们介绍了一类物体,我们称之为“膨胀曲面”。这些提供了我们感兴趣的表面上的叶理家族的动力学。我们提出并分析了几个例子,并定义了与这些相关的概念,以激发几个问题和悬而未决的问题。特别地,我们将Veech群的概念推广到扩张曲面,并证明了这些Veech群在结构上的一个结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dilation surfaces and their Veech groups
We introduce a class of objects which we call 'dilation surfaces'. These provide families of foliations on surfaces whose dynamics we are interested in. We present and analyze a couple of examples, and we define concepts related to these in order to motivate several questions and open problems. In particular we generalize the notion of Veech group to dilation surfaces, and we prove a structure result about these Veech groups.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
11
审稿时长
>12 weeks
期刊介绍: The Journal of Modern Dynamics (JMD) is dedicated to publishing research articles in active and promising areas in the theory of dynamical systems with particular emphasis on the mutual interaction between dynamics and other major areas of mathematical research, including: Number theory Symplectic geometry Differential geometry Rigidity Quantum chaos Teichmüller theory Geometric group theory Harmonic analysis on manifolds. The journal is published by the American Institute of Mathematical Sciences (AIMS) with the support of the Anatole Katok Center for Dynamical Systems and Geometry at the Pennsylvania State University.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信