{"title":"一些有向格拉斯曼流形的积分上同调代数","authors":"Milica Jovanović","doi":"10.1016/j.indag.2023.07.004","DOIUrl":null,"url":null,"abstract":"<div><p><span>The integral cohomology algebra of </span><span><math><msub><mrow><mover><mrow><mi>G</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mn>6</mn><mo>,</mo><mn>3</mn></mrow></msub></math></span> has been determined in the recent work of Kalafat and Yalçınkaya. We completely determine the integral cohomology algebra of <span><math><msub><mrow><mover><mrow><mi>G</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>n</mi><mo>,</mo><mn>3</mn></mrow></msub></math></span> for <span><math><mrow><mi>n</mi><mo>=</mo><mn>8</mn></mrow></math></span> and <span><math><mrow><mi>n</mi><mo>=</mo><mn>10</mn></mrow></math></span><span>. The main method used to describe these algebras is the Leray–Serre spectral sequence. We also illustrate this method by determining the integral cohomology algebra of </span><span><math><msub><mrow><mover><mrow><mi>G</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>n</mi><mo>,</mo><mn>2</mn></mrow></msub></math></span> for <span><math><mi>n</mi></math></span> odd.</p></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"35 1","pages":"Pages 1-13"},"PeriodicalIF":0.5000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On integral cohomology algebra of some oriented Grassmann manifolds\",\"authors\":\"Milica Jovanović\",\"doi\":\"10.1016/j.indag.2023.07.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>The integral cohomology algebra of </span><span><math><msub><mrow><mover><mrow><mi>G</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mn>6</mn><mo>,</mo><mn>3</mn></mrow></msub></math></span> has been determined in the recent work of Kalafat and Yalçınkaya. We completely determine the integral cohomology algebra of <span><math><msub><mrow><mover><mrow><mi>G</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>n</mi><mo>,</mo><mn>3</mn></mrow></msub></math></span> for <span><math><mrow><mi>n</mi><mo>=</mo><mn>8</mn></mrow></math></span> and <span><math><mrow><mi>n</mi><mo>=</mo><mn>10</mn></mrow></math></span><span>. The main method used to describe these algebras is the Leray–Serre spectral sequence. We also illustrate this method by determining the integral cohomology algebra of </span><span><math><msub><mrow><mover><mrow><mi>G</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>n</mi><mo>,</mo><mn>2</mn></mrow></msub></math></span> for <span><math><mi>n</mi></math></span> odd.</p></div>\",\"PeriodicalId\":56126,\"journal\":{\"name\":\"Indagationes Mathematicae-New Series\",\"volume\":\"35 1\",\"pages\":\"Pages 1-13\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indagationes Mathematicae-New Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S001935772300068X\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae-New Series","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S001935772300068X","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
On integral cohomology algebra of some oriented Grassmann manifolds
The integral cohomology algebra of has been determined in the recent work of Kalafat and Yalçınkaya. We completely determine the integral cohomology algebra of for and . The main method used to describe these algebras is the Leray–Serre spectral sequence. We also illustrate this method by determining the integral cohomology algebra of for odd.
期刊介绍:
Indagationes Mathematicae is a peer-reviewed international journal for the Mathematical Sciences of the Royal Dutch Mathematical Society. The journal aims at the publication of original mathematical research papers of high quality and of interest to a large segment of the mathematics community. The journal also welcomes the submission of review papers of high quality.