涉及切比雪夫多项式、斐波那契多项式及其导数的一些恒等式

IF 0.4 Q4 MATHEMATICS
J. Kishore, V. Verma
{"title":"涉及切比雪夫多项式、斐波那契多项式及其导数的一些恒等式","authors":"J. Kishore, V. Verma","doi":"10.7546/nntdm.2023.29.2.204-215","DOIUrl":null,"url":null,"abstract":"In this paper, we will derive the explicit formulae for Chebyshev polynomials of the third and fourth kind with odd and even indices using the combinatorial method. Similar results are also deduced for their r-th derivatives. Finally, some identities involving Chebyshev polynomials of the third and fourth kind with even and odd indices and Fibonacci polynomials with negative indices are obtained.","PeriodicalId":44060,"journal":{"name":"Notes on Number Theory and Discrete Mathematics","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2023-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Some identities involving Chebyshev polynomials, Fibonacci polynomials and their derivatives\",\"authors\":\"J. Kishore, V. Verma\",\"doi\":\"10.7546/nntdm.2023.29.2.204-215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we will derive the explicit formulae for Chebyshev polynomials of the third and fourth kind with odd and even indices using the combinatorial method. Similar results are also deduced for their r-th derivatives. Finally, some identities involving Chebyshev polynomials of the third and fourth kind with even and odd indices and Fibonacci polynomials with negative indices are obtained.\",\"PeriodicalId\":44060,\"journal\":{\"name\":\"Notes on Number Theory and Discrete Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Notes on Number Theory and Discrete Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7546/nntdm.2023.29.2.204-215\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Notes on Number Theory and Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7546/nntdm.2023.29.2.204-215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

本文用组合方法导出了第三类和第四类奇偶指数切比雪夫多项式的显式公式。对它们的r阶导数也推导出类似的结果。最后,得到了涉及第三类、第四类奇偶指标Chebyshev多项式和负指标Fibonacci多项式的恒等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some identities involving Chebyshev polynomials, Fibonacci polynomials and their derivatives
In this paper, we will derive the explicit formulae for Chebyshev polynomials of the third and fourth kind with odd and even indices using the combinatorial method. Similar results are also deduced for their r-th derivatives. Finally, some identities involving Chebyshev polynomials of the third and fourth kind with even and odd indices and Fibonacci polynomials with negative indices are obtained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
33.30%
发文量
71
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信