{"title":"涉及切比雪夫多项式、斐波那契多项式及其导数的一些恒等式","authors":"J. Kishore, V. Verma","doi":"10.7546/nntdm.2023.29.2.204-215","DOIUrl":null,"url":null,"abstract":"In this paper, we will derive the explicit formulae for Chebyshev polynomials of the third and fourth kind with odd and even indices using the combinatorial method. Similar results are also deduced for their r-th derivatives. Finally, some identities involving Chebyshev polynomials of the third and fourth kind with even and odd indices and Fibonacci polynomials with negative indices are obtained.","PeriodicalId":44060,"journal":{"name":"Notes on Number Theory and Discrete Mathematics","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2023-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Some identities involving Chebyshev polynomials, Fibonacci polynomials and their derivatives\",\"authors\":\"J. Kishore, V. Verma\",\"doi\":\"10.7546/nntdm.2023.29.2.204-215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we will derive the explicit formulae for Chebyshev polynomials of the third and fourth kind with odd and even indices using the combinatorial method. Similar results are also deduced for their r-th derivatives. Finally, some identities involving Chebyshev polynomials of the third and fourth kind with even and odd indices and Fibonacci polynomials with negative indices are obtained.\",\"PeriodicalId\":44060,\"journal\":{\"name\":\"Notes on Number Theory and Discrete Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Notes on Number Theory and Discrete Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7546/nntdm.2023.29.2.204-215\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Notes on Number Theory and Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7546/nntdm.2023.29.2.204-215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Some identities involving Chebyshev polynomials, Fibonacci polynomials and their derivatives
In this paper, we will derive the explicit formulae for Chebyshev polynomials of the third and fourth kind with odd and even indices using the combinatorial method. Similar results are also deduced for their r-th derivatives. Finally, some identities involving Chebyshev polynomials of the third and fourth kind with even and odd indices and Fibonacci polynomials with negative indices are obtained.