Zhiwei Pan, Jianfei Xiao, Qi Huang, Donglang Jiang, Shuhua Ren, Y. Guan, F. Xie, Da-liang Sun, Fengchun Hua
{"title":"体型障碍患者的脑糖代谢网络和连接性","authors":"Zhiwei Pan, Jianfei Xiao, Qi Huang, Donglang Jiang, Shuhua Ren, Y. Guan, F. Xie, Da-liang Sun, Fengchun Hua","doi":"10.3760/CMA.J.ISSN.2095-2848.2020.01.002","DOIUrl":null,"url":null,"abstract":"Objective \nTo observe the alteration of brain glucose metabolic network in patients with somatoform disorders (SFD). \n \n \nMethods \n18F-fluorodeoxyglucose (FDG) PET images of 18 SFD patients (10 males, 8 females; age: (39.5±12.0) years; illness duration: (3.67±3.20) years) and 21 matched healthy controls (13 males, 8 females; age: (43.9±8.4) years) in Huashan Hospital of Fudan University from October 2011 to December 2012 were enrolled to construct the brain glucose metabolic networks for 2 groups (SFD group, control group) respectively. Then the global network properties (normalized clustering coefficient, normalized shortest path length, small-worldness and global efficiency) and local parameters (clustering coefficient and betweenness centrality of the node) were calculated using the graph theory. Differences between 2 groups were compared by permutation test with 1 000 permutations. The top 20% (18/90) were classified as Hub nodes based on the results of clustering coefficient and betweenness centrality of the node. \n \n \nResults \nSmall-worldness of SFD patients was similar to that of healthy controls (σ>1). There were decreased tendency in normalized clustering coefficient and global efficiency, and increased tendency in normalized shortest path length in SFD patients, but without significant differences (P>0.05). Compared to healthy controls, the betweenness centrality of left pallidum, left amygdala, left precuneus and right angular gyrus increased (permutation test, P<0.05); the betweenness centrality of left middle temporal gyrus, right superior occipital gyrus decreased (permutation test, P<0.05); the clustering coefficients of bilateral pallidum, bilateral thalamus, and left amygdala decreased (permutation test, P<0.05). Most changed Hub nodes (16/24) belonged to limbic system. \n \n \nConclusion \nThe changes of topological properties of brain glucose metabolic network in SFD patients including the decreased tendency of small-worldness and global efficiency, as well as the altered Hub nodes, may provide valid imaging evidences for brain dysfunction of somatization symptoms. \n \n \nKey words: \nSomatoform disorders; Metabolic networks and pathways; Brain; Positron-emission tomography; Deoxyglucose","PeriodicalId":10099,"journal":{"name":"中华核医学与分子影像杂志","volume":"40 1","pages":"6-10"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Brain glucose metabolism network and connectivity in patients with somatoform disorders\",\"authors\":\"Zhiwei Pan, Jianfei Xiao, Qi Huang, Donglang Jiang, Shuhua Ren, Y. Guan, F. Xie, Da-liang Sun, Fengchun Hua\",\"doi\":\"10.3760/CMA.J.ISSN.2095-2848.2020.01.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Objective \\nTo observe the alteration of brain glucose metabolic network in patients with somatoform disorders (SFD). \\n \\n \\nMethods \\n18F-fluorodeoxyglucose (FDG) PET images of 18 SFD patients (10 males, 8 females; age: (39.5±12.0) years; illness duration: (3.67±3.20) years) and 21 matched healthy controls (13 males, 8 females; age: (43.9±8.4) years) in Huashan Hospital of Fudan University from October 2011 to December 2012 were enrolled to construct the brain glucose metabolic networks for 2 groups (SFD group, control group) respectively. Then the global network properties (normalized clustering coefficient, normalized shortest path length, small-worldness and global efficiency) and local parameters (clustering coefficient and betweenness centrality of the node) were calculated using the graph theory. Differences between 2 groups were compared by permutation test with 1 000 permutations. The top 20% (18/90) were classified as Hub nodes based on the results of clustering coefficient and betweenness centrality of the node. \\n \\n \\nResults \\nSmall-worldness of SFD patients was similar to that of healthy controls (σ>1). There were decreased tendency in normalized clustering coefficient and global efficiency, and increased tendency in normalized shortest path length in SFD patients, but without significant differences (P>0.05). Compared to healthy controls, the betweenness centrality of left pallidum, left amygdala, left precuneus and right angular gyrus increased (permutation test, P<0.05); the betweenness centrality of left middle temporal gyrus, right superior occipital gyrus decreased (permutation test, P<0.05); the clustering coefficients of bilateral pallidum, bilateral thalamus, and left amygdala decreased (permutation test, P<0.05). Most changed Hub nodes (16/24) belonged to limbic system. \\n \\n \\nConclusion \\nThe changes of topological properties of brain glucose metabolic network in SFD patients including the decreased tendency of small-worldness and global efficiency, as well as the altered Hub nodes, may provide valid imaging evidences for brain dysfunction of somatization symptoms. \\n \\n \\nKey words: \\nSomatoform disorders; Metabolic networks and pathways; Brain; Positron-emission tomography; Deoxyglucose\",\"PeriodicalId\":10099,\"journal\":{\"name\":\"中华核医学与分子影像杂志\",\"volume\":\"40 1\",\"pages\":\"6-10\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"中华核医学与分子影像杂志\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3760/CMA.J.ISSN.2095-2848.2020.01.002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"中华核医学与分子影像杂志","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3760/CMA.J.ISSN.2095-2848.2020.01.002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Brain glucose metabolism network and connectivity in patients with somatoform disorders
Objective
To observe the alteration of brain glucose metabolic network in patients with somatoform disorders (SFD).
Methods
18F-fluorodeoxyglucose (FDG) PET images of 18 SFD patients (10 males, 8 females; age: (39.5±12.0) years; illness duration: (3.67±3.20) years) and 21 matched healthy controls (13 males, 8 females; age: (43.9±8.4) years) in Huashan Hospital of Fudan University from October 2011 to December 2012 were enrolled to construct the brain glucose metabolic networks for 2 groups (SFD group, control group) respectively. Then the global network properties (normalized clustering coefficient, normalized shortest path length, small-worldness and global efficiency) and local parameters (clustering coefficient and betweenness centrality of the node) were calculated using the graph theory. Differences between 2 groups were compared by permutation test with 1 000 permutations. The top 20% (18/90) were classified as Hub nodes based on the results of clustering coefficient and betweenness centrality of the node.
Results
Small-worldness of SFD patients was similar to that of healthy controls (σ>1). There were decreased tendency in normalized clustering coefficient and global efficiency, and increased tendency in normalized shortest path length in SFD patients, but without significant differences (P>0.05). Compared to healthy controls, the betweenness centrality of left pallidum, left amygdala, left precuneus and right angular gyrus increased (permutation test, P<0.05); the betweenness centrality of left middle temporal gyrus, right superior occipital gyrus decreased (permutation test, P<0.05); the clustering coefficients of bilateral pallidum, bilateral thalamus, and left amygdala decreased (permutation test, P<0.05). Most changed Hub nodes (16/24) belonged to limbic system.
Conclusion
The changes of topological properties of brain glucose metabolic network in SFD patients including the decreased tendency of small-worldness and global efficiency, as well as the altered Hub nodes, may provide valid imaging evidences for brain dysfunction of somatization symptoms.
Key words:
Somatoform disorders; Metabolic networks and pathways; Brain; Positron-emission tomography; Deoxyglucose
期刊介绍:
Chinese Journal of Nuclear Medicine and Molecular Imaging (CJNMMI) was established in 1981, with the name of Chinese Journal of Nuclear Medicine, and renamed in 2012. As the specialized periodical in the domain of nuclear medicine in China, the aim of Chinese Journal of Nuclear Medicine and Molecular Imaging is to develop nuclear medicine sciences, push forward nuclear medicine education and basic construction, foster qualified personnel training and academic exchanges, and popularize related knowledge and raising public awareness.
Topics of interest for Chinese Journal of Nuclear Medicine and Molecular Imaging include:
-Research and commentary on nuclear medicine and molecular imaging with significant implications for disease diagnosis and treatment
-Investigative studies of heart, brain imaging and tumor positioning
-Perspectives and reviews on research topics that discuss the implications of findings from the basic science and clinical practice of nuclear medicine and molecular imaging
- Nuclear medicine education and personnel training
- Topics of interest for nuclear medicine and molecular imaging include subject coverage diseases such as cardiovascular diseases, cancer, Alzheimer’s disease, and Parkinson’s disease, and also radionuclide therapy, radiomics, molecular probes and related translational research.