复Hessian算子的加权Green函数

IF 0.7 4区 数学 Q2 MATHEMATICS
Hadhami Elaini, A. Zeriahi
{"title":"复Hessian算子的加权Green函数","authors":"Hadhami Elaini, A. Zeriahi","doi":"10.4064/ap220509-27-10","DOIUrl":null,"url":null,"abstract":"Let $1\\leq m\\leq n$ be two fixed integers. Let $\\Omega \\Subset \\mathbb C^n$ be a bounded $m$-hyperconvex domain and $\\mathcal A \\subset \\Omega \\times ]0,+ \\infty[$ a finite set of weighted poles. We define and study properties of the $m$-subharmonic Green function of $\\Omega$ with prescribed behaviour near the weighted set $A$. In particular we prove uniform continuity of the exponential Green function in both variables $(z,\\mathcal A)$ in the metric space $\\bar \\Omega \\times \\mathcal F$, where $\\mathcal F$ is a suitable family of sets of weighted poles in $\\Omega \\times ]0,+ \\infty[$ endowed with the Hausdorff distance. Moreover we give a precise estimates on its modulus of continuity. Our results generalize and improve previous results concerning the pluricomplex Green function du to P. Lelong.","PeriodicalId":55513,"journal":{"name":"Annales Polonici Mathematici","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Weighted Green functions for complex Hessian operators\",\"authors\":\"Hadhami Elaini, A. Zeriahi\",\"doi\":\"10.4064/ap220509-27-10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $1\\\\leq m\\\\leq n$ be two fixed integers. Let $\\\\Omega \\\\Subset \\\\mathbb C^n$ be a bounded $m$-hyperconvex domain and $\\\\mathcal A \\\\subset \\\\Omega \\\\times ]0,+ \\\\infty[$ a finite set of weighted poles. We define and study properties of the $m$-subharmonic Green function of $\\\\Omega$ with prescribed behaviour near the weighted set $A$. In particular we prove uniform continuity of the exponential Green function in both variables $(z,\\\\mathcal A)$ in the metric space $\\\\bar \\\\Omega \\\\times \\\\mathcal F$, where $\\\\mathcal F$ is a suitable family of sets of weighted poles in $\\\\Omega \\\\times ]0,+ \\\\infty[$ endowed with the Hausdorff distance. Moreover we give a precise estimates on its modulus of continuity. Our results generalize and improve previous results concerning the pluricomplex Green function du to P. Lelong.\",\"PeriodicalId\":55513,\"journal\":{\"name\":\"Annales Polonici Mathematici\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Polonici Mathematici\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4064/ap220509-27-10\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Polonici Mathematici","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/ap220509-27-10","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

设$1\leq m\leq n$为两个固定整数。设$\Omega \Subset \mathbb C^n$是一个有界的$m$ -超凸域,$\mathcal A \subset \Omega \times ]0,+ \infty[$是一个有限的加权极点集。定义并研究了在权集$A$附近具有规定性的$\Omega$的$m$ -次调和Green函数的性质。特别地,我们证明了指数格林函数在度量空间$\bar \Omega \times \mathcal F$中两个变量$(z,\mathcal A)$上的一致连续性,其中$\mathcal F$是$\Omega \times ]0,+ \infty[$中具有Hausdorff距离的一组合适的加权极点集。并且给出了它的连续模量的精确估计。我们的结果推广和改进了前人关于复数Green函数du to P. Lelong的研究结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Weighted Green functions for complex Hessian operators
Let $1\leq m\leq n$ be two fixed integers. Let $\Omega \Subset \mathbb C^n$ be a bounded $m$-hyperconvex domain and $\mathcal A \subset \Omega \times ]0,+ \infty[$ a finite set of weighted poles. We define and study properties of the $m$-subharmonic Green function of $\Omega$ with prescribed behaviour near the weighted set $A$. In particular we prove uniform continuity of the exponential Green function in both variables $(z,\mathcal A)$ in the metric space $\bar \Omega \times \mathcal F$, where $\mathcal F$ is a suitable family of sets of weighted poles in $\Omega \times ]0,+ \infty[$ endowed with the Hausdorff distance. Moreover we give a precise estimates on its modulus of continuity. Our results generalize and improve previous results concerning the pluricomplex Green function du to P. Lelong.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
20.00%
发文量
19
审稿时长
6 months
期刊介绍: Annales Polonici Mathematici is a continuation of Annales de la Société Polonaise de Mathématique (vols. I–XXV) founded in 1921 by Stanisław Zaremba. The journal publishes papers in Mathematical Analysis and Geometry. Each volume appears in three issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信