{"title":"复Hessian算子的加权Green函数","authors":"Hadhami Elaini, A. Zeriahi","doi":"10.4064/ap220509-27-10","DOIUrl":null,"url":null,"abstract":"Let $1\\leq m\\leq n$ be two fixed integers. Let $\\Omega \\Subset \\mathbb C^n$ be a bounded $m$-hyperconvex domain and $\\mathcal A \\subset \\Omega \\times ]0,+ \\infty[$ a finite set of weighted poles. We define and study properties of the $m$-subharmonic Green function of $\\Omega$ with prescribed behaviour near the weighted set $A$. In particular we prove uniform continuity of the exponential Green function in both variables $(z,\\mathcal A)$ in the metric space $\\bar \\Omega \\times \\mathcal F$, where $\\mathcal F$ is a suitable family of sets of weighted poles in $\\Omega \\times ]0,+ \\infty[$ endowed with the Hausdorff distance. Moreover we give a precise estimates on its modulus of continuity. Our results generalize and improve previous results concerning the pluricomplex Green function du to P. Lelong.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Weighted Green functions for complex Hessian operators\",\"authors\":\"Hadhami Elaini, A. Zeriahi\",\"doi\":\"10.4064/ap220509-27-10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $1\\\\leq m\\\\leq n$ be two fixed integers. Let $\\\\Omega \\\\Subset \\\\mathbb C^n$ be a bounded $m$-hyperconvex domain and $\\\\mathcal A \\\\subset \\\\Omega \\\\times ]0,+ \\\\infty[$ a finite set of weighted poles. We define and study properties of the $m$-subharmonic Green function of $\\\\Omega$ with prescribed behaviour near the weighted set $A$. In particular we prove uniform continuity of the exponential Green function in both variables $(z,\\\\mathcal A)$ in the metric space $\\\\bar \\\\Omega \\\\times \\\\mathcal F$, where $\\\\mathcal F$ is a suitable family of sets of weighted poles in $\\\\Omega \\\\times ]0,+ \\\\infty[$ endowed with the Hausdorff distance. Moreover we give a precise estimates on its modulus of continuity. Our results generalize and improve previous results concerning the pluricomplex Green function du to P. Lelong.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4064/ap220509-27-10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/ap220509-27-10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
摘要
设$1\leq m\leq n$为两个固定整数。设$\Omega \Subset \mathbb C^n$是一个有界的$m$ -超凸域,$\mathcal A \subset \Omega \times ]0,+ \infty[$是一个有限的加权极点集。定义并研究了在权集$A$附近具有规定性的$\Omega$的$m$ -次调和Green函数的性质。特别地,我们证明了指数格林函数在度量空间$\bar \Omega \times \mathcal F$中两个变量$(z,\mathcal A)$上的一致连续性,其中$\mathcal F$是$\Omega \times ]0,+ \infty[$中具有Hausdorff距离的一组合适的加权极点集。并且给出了它的连续模量的精确估计。我们的结果推广和改进了前人关于复数Green函数du to P. Lelong的研究结果。
Weighted Green functions for complex Hessian operators
Let $1\leq m\leq n$ be two fixed integers. Let $\Omega \Subset \mathbb C^n$ be a bounded $m$-hyperconvex domain and $\mathcal A \subset \Omega \times ]0,+ \infty[$ a finite set of weighted poles. We define and study properties of the $m$-subharmonic Green function of $\Omega$ with prescribed behaviour near the weighted set $A$. In particular we prove uniform continuity of the exponential Green function in both variables $(z,\mathcal A)$ in the metric space $\bar \Omega \times \mathcal F$, where $\mathcal F$ is a suitable family of sets of weighted poles in $\Omega \times ]0,+ \infty[$ endowed with the Hausdorff distance. Moreover we give a precise estimates on its modulus of continuity. Our results generalize and improve previous results concerning the pluricomplex Green function du to P. Lelong.