{"title":"复Hessian算子的加权Green函数","authors":"Hadhami Elaini, A. Zeriahi","doi":"10.4064/ap220509-27-10","DOIUrl":null,"url":null,"abstract":"Let $1\\leq m\\leq n$ be two fixed integers. Let $\\Omega \\Subset \\mathbb C^n$ be a bounded $m$-hyperconvex domain and $\\mathcal A \\subset \\Omega \\times ]0,+ \\infty[$ a finite set of weighted poles. We define and study properties of the $m$-subharmonic Green function of $\\Omega$ with prescribed behaviour near the weighted set $A$. In particular we prove uniform continuity of the exponential Green function in both variables $(z,\\mathcal A)$ in the metric space $\\bar \\Omega \\times \\mathcal F$, where $\\mathcal F$ is a suitable family of sets of weighted poles in $\\Omega \\times ]0,+ \\infty[$ endowed with the Hausdorff distance. Moreover we give a precise estimates on its modulus of continuity. Our results generalize and improve previous results concerning the pluricomplex Green function du to P. Lelong.","PeriodicalId":55513,"journal":{"name":"Annales Polonici Mathematici","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Weighted Green functions for complex Hessian operators\",\"authors\":\"Hadhami Elaini, A. Zeriahi\",\"doi\":\"10.4064/ap220509-27-10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $1\\\\leq m\\\\leq n$ be two fixed integers. Let $\\\\Omega \\\\Subset \\\\mathbb C^n$ be a bounded $m$-hyperconvex domain and $\\\\mathcal A \\\\subset \\\\Omega \\\\times ]0,+ \\\\infty[$ a finite set of weighted poles. We define and study properties of the $m$-subharmonic Green function of $\\\\Omega$ with prescribed behaviour near the weighted set $A$. In particular we prove uniform continuity of the exponential Green function in both variables $(z,\\\\mathcal A)$ in the metric space $\\\\bar \\\\Omega \\\\times \\\\mathcal F$, where $\\\\mathcal F$ is a suitable family of sets of weighted poles in $\\\\Omega \\\\times ]0,+ \\\\infty[$ endowed with the Hausdorff distance. Moreover we give a precise estimates on its modulus of continuity. Our results generalize and improve previous results concerning the pluricomplex Green function du to P. Lelong.\",\"PeriodicalId\":55513,\"journal\":{\"name\":\"Annales Polonici Mathematici\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Polonici Mathematici\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4064/ap220509-27-10\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Polonici Mathematici","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/ap220509-27-10","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
摘要
设$1\leq m\leq n$为两个固定整数。设$\Omega \Subset \mathbb C^n$是一个有界的$m$ -超凸域,$\mathcal A \subset \Omega \times ]0,+ \infty[$是一个有限的加权极点集。定义并研究了在权集$A$附近具有规定性的$\Omega$的$m$ -次调和Green函数的性质。特别地,我们证明了指数格林函数在度量空间$\bar \Omega \times \mathcal F$中两个变量$(z,\mathcal A)$上的一致连续性,其中$\mathcal F$是$\Omega \times ]0,+ \infty[$中具有Hausdorff距离的一组合适的加权极点集。并且给出了它的连续模量的精确估计。我们的结果推广和改进了前人关于复数Green函数du to P. Lelong的研究结果。
Weighted Green functions for complex Hessian operators
Let $1\leq m\leq n$ be two fixed integers. Let $\Omega \Subset \mathbb C^n$ be a bounded $m$-hyperconvex domain and $\mathcal A \subset \Omega \times ]0,+ \infty[$ a finite set of weighted poles. We define and study properties of the $m$-subharmonic Green function of $\Omega$ with prescribed behaviour near the weighted set $A$. In particular we prove uniform continuity of the exponential Green function in both variables $(z,\mathcal A)$ in the metric space $\bar \Omega \times \mathcal F$, where $\mathcal F$ is a suitable family of sets of weighted poles in $\Omega \times ]0,+ \infty[$ endowed with the Hausdorff distance. Moreover we give a precise estimates on its modulus of continuity. Our results generalize and improve previous results concerning the pluricomplex Green function du to P. Lelong.
期刊介绍:
Annales Polonici Mathematici is a continuation of Annales de la Société Polonaise de Mathématique (vols. I–XXV) founded in 1921 by Stanisław Zaremba.
The journal publishes papers in Mathematical Analysis and Geometry. Each volume appears in three issues.