利用时变HAR潜因子模型实现金融期货波动性预测

IF 5.4 2区 管理学 Q1 BUSINESS, FINANCE
Jiawen Luo , Zhenbiao Chen , Shengquan Wang
{"title":"利用时变HAR潜因子模型实现金融期货波动性预测","authors":"Jiawen Luo ,&nbsp;Zhenbiao Chen ,&nbsp;Shengquan Wang","doi":"10.1016/j.jmse.2022.10.005","DOIUrl":null,"url":null,"abstract":"<div><p>We forecast realized volatilities by developing a time-varying heterogeneous autoregressive (<em>HAR</em>) latent factor model with dynamic model average (<em>DMA</em>) and dynamic model selection (<em>DMS</em>) approaches. The number of latent factors is determined using Chan and Grant's (2016) deviation information criteria. The predictors in our model include lagged daily, weekly, and monthly volatility variables, the corresponding volatility factors, and a speculation variable. In addition, the time-varying properties of the best-performing <em>DMA(DMS)-HAR-2FX</em> models, including size, inclusion probabilities, and coefficients, are examined. We find that the proposed <em>DMA(DMS)-HAR-2FX</em> model outperforms the competing models for both in-sample and out-of-sample forecasts. Furthermore, the speculation variable displays strong predictability for forecasting the realized volatility of financial futures in China.</p></div>","PeriodicalId":36172,"journal":{"name":"Journal of Management Science and Engineering","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Realized volatility forecast of financial futures using time-varying HAR latent factor models\",\"authors\":\"Jiawen Luo ,&nbsp;Zhenbiao Chen ,&nbsp;Shengquan Wang\",\"doi\":\"10.1016/j.jmse.2022.10.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We forecast realized volatilities by developing a time-varying heterogeneous autoregressive (<em>HAR</em>) latent factor model with dynamic model average (<em>DMA</em>) and dynamic model selection (<em>DMS</em>) approaches. The number of latent factors is determined using Chan and Grant's (2016) deviation information criteria. The predictors in our model include lagged daily, weekly, and monthly volatility variables, the corresponding volatility factors, and a speculation variable. In addition, the time-varying properties of the best-performing <em>DMA(DMS)-HAR-2FX</em> models, including size, inclusion probabilities, and coefficients, are examined. We find that the proposed <em>DMA(DMS)-HAR-2FX</em> model outperforms the competing models for both in-sample and out-of-sample forecasts. Furthermore, the speculation variable displays strong predictability for forecasting the realized volatility of financial futures in China.</p></div>\",\"PeriodicalId\":36172,\"journal\":{\"name\":\"Journal of Management Science and Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Management Science and Engineering\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2096232022000580\",\"RegionNum\":2,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Management Science and Engineering","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2096232022000580","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 3

摘要

本文采用动态模型平均(DMA)和动态模型选择(DMS)方法建立了一个时变异构自回归(HAR)潜在因素模型来预测已实现的波动率。潜在因素的数量是使用Chan和Grant(2016)的偏差信息标准确定的。我们模型中的预测因子包括滞后的每日、每周和每月波动变量、相应的波动因子和投机变量。此外,还研究了性能最佳的DMA(DMS)-HAR-2FX模型的时变特性,包括大小、包含概率和系数。我们发现所提出的DMA(DMS)-HAR-2FX模型在样本内和样本外预测方面都优于竞争模型。投机变量对预测中国金融期货的已实现波动率具有较强的可预测性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Realized volatility forecast of financial futures using time-varying HAR latent factor models

We forecast realized volatilities by developing a time-varying heterogeneous autoregressive (HAR) latent factor model with dynamic model average (DMA) and dynamic model selection (DMS) approaches. The number of latent factors is determined using Chan and Grant's (2016) deviation information criteria. The predictors in our model include lagged daily, weekly, and monthly volatility variables, the corresponding volatility factors, and a speculation variable. In addition, the time-varying properties of the best-performing DMA(DMS)-HAR-2FX models, including size, inclusion probabilities, and coefficients, are examined. We find that the proposed DMA(DMS)-HAR-2FX model outperforms the competing models for both in-sample and out-of-sample forecasts. Furthermore, the speculation variable displays strong predictability for forecasting the realized volatility of financial futures in China.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Management Science and Engineering
Journal of Management Science and Engineering Engineering-Engineering (miscellaneous)
CiteScore
9.30
自引率
3.00%
发文量
37
审稿时长
108 days
期刊介绍: The Journal of Engineering and Applied Science (JEAS) is the official journal of the Faculty of Engineering, Cairo University (CUFE), Egypt, established in 1816. The Journal of Engineering and Applied Science publishes fundamental and applied research articles and reviews spanning different areas of engineering disciplines, applications, and interdisciplinary topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信