{"title":"平等的逻辑","authors":"S. Ghorbani","doi":"10.18778/0138-0680.2020.14","DOIUrl":null,"url":null,"abstract":"Abstract: In this paper, we introduce and study a corresponding logic toequality-algebras and obtain some basic properties of this logic. We provethe soundness and completeness of this logic based on equality-algebrasand local deduction theorem. Then we introduce the concept of (prelinear)equality-algebras and investigate some related properties. Also, westudy -deductive systems of equality-algebras. In particular, we provethat every prelinear equality-algebra is a subdirect product of linearly orderedequality-algebras. Finally, we construct prelinear equality logicand prove the soundness and strong completeness of this logic respect toprelinear equality-algebras.","PeriodicalId":38667,"journal":{"name":"Bulletin of the Section of Logic","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Equality Logic\",\"authors\":\"S. Ghorbani\",\"doi\":\"10.18778/0138-0680.2020.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract: In this paper, we introduce and study a corresponding logic toequality-algebras and obtain some basic properties of this logic. We provethe soundness and completeness of this logic based on equality-algebrasand local deduction theorem. Then we introduce the concept of (prelinear)equality-algebras and investigate some related properties. Also, westudy -deductive systems of equality-algebras. In particular, we provethat every prelinear equality-algebra is a subdirect product of linearly orderedequality-algebras. Finally, we construct prelinear equality logicand prove the soundness and strong completeness of this logic respect toprelinear equality-algebras.\",\"PeriodicalId\":38667,\"journal\":{\"name\":\"Bulletin of the Section of Logic\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Section of Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18778/0138-0680.2020.14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Arts and Humanities\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Section of Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18778/0138-0680.2020.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Arts and Humanities","Score":null,"Total":0}
Abstract: In this paper, we introduce and study a corresponding logic toequality-algebras and obtain some basic properties of this logic. We provethe soundness and completeness of this logic based on equality-algebrasand local deduction theorem. Then we introduce the concept of (prelinear)equality-algebras and investigate some related properties. Also, westudy -deductive systems of equality-algebras. In particular, we provethat every prelinear equality-algebra is a subdirect product of linearly orderedequality-algebras. Finally, we construct prelinear equality logicand prove the soundness and strong completeness of this logic respect toprelinear equality-algebras.