广义Petersen图和flower snark图的弱凸数和凸支配数

IF 0.6 4区 数学 Q3 MATHEMATICS
J. Kratica, Dragan Matic, V. Filipović
{"title":"广义Petersen图和flower snark图的弱凸数和凸支配数","authors":"J. Kratica, Dragan Matic, V. Filipović","doi":"10.33044/revuma.v61n2a16","DOIUrl":null,"url":null,"abstract":". We consider the weakly convex and convex domination numbers for two classes of graphs: generalized Petersen graphs and flower snark graphs. For a given generalized Petersen graph GP ( n,k ), we prove that if k = 1 and n ≥ 4 then both the weakly convex domination number γ wcon ( GP ( n,k )) and the convex domination number γ con ( GP ( n,k )) are equal to n . For k ≥ 2 and n ≥ 13, γ wcon ( GP ( n,k )) = γ con ( GP ( n,k )) = 2 n , which is the order of GP ( n,k ). Special cases for smaller graphs are solved by the exact method. For a flower snark graph J n , where n is odd and n ≥ 5, we prove that γ wcon ( J n ) = 2 n and γ con ( J n ) = 4 n .","PeriodicalId":54469,"journal":{"name":"Revista De La Union Matematica Argentina","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2020-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Weakly convex and convex domination numbers for generalized Petersen and flower snark graphs\",\"authors\":\"J. Kratica, Dragan Matic, V. Filipović\",\"doi\":\"10.33044/revuma.v61n2a16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". We consider the weakly convex and convex domination numbers for two classes of graphs: generalized Petersen graphs and flower snark graphs. For a given generalized Petersen graph GP ( n,k ), we prove that if k = 1 and n ≥ 4 then both the weakly convex domination number γ wcon ( GP ( n,k )) and the convex domination number γ con ( GP ( n,k )) are equal to n . For k ≥ 2 and n ≥ 13, γ wcon ( GP ( n,k )) = γ con ( GP ( n,k )) = 2 n , which is the order of GP ( n,k ). Special cases for smaller graphs are solved by the exact method. For a flower snark graph J n , where n is odd and n ≥ 5, we prove that γ wcon ( J n ) = 2 n and γ con ( J n ) = 4 n .\",\"PeriodicalId\":54469,\"journal\":{\"name\":\"Revista De La Union Matematica Argentina\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista De La Union Matematica Argentina\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.33044/revuma.v61n2a16\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista De La Union Matematica Argentina","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.33044/revuma.v61n2a16","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

.我们考虑两类图的弱凸和凸控制数:广义Petersen图和幂-snark图。对于给定的广义Petersen图GP(n,k),我们证明了如果k=1且n≥4,则弱凸控制数γwcon(GP(n、k))和凸控制数Γcon(GP(n,k))都等于n。对于k≥2和n≥13,γwcon(GP(n,k))=γcon(GP(n,k)。对于较小图形的特殊情况,用精确方法求解。对于幂snark图Jn,其中n为奇数且n≥5,我们证明了γwcon(Jn)=2n和γcon(JN)=4n。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Weakly convex and convex domination numbers for generalized Petersen and flower snark graphs
. We consider the weakly convex and convex domination numbers for two classes of graphs: generalized Petersen graphs and flower snark graphs. For a given generalized Petersen graph GP ( n,k ), we prove that if k = 1 and n ≥ 4 then both the weakly convex domination number γ wcon ( GP ( n,k )) and the convex domination number γ con ( GP ( n,k )) are equal to n . For k ≥ 2 and n ≥ 13, γ wcon ( GP ( n,k )) = γ con ( GP ( n,k )) = 2 n , which is the order of GP ( n,k ). Special cases for smaller graphs are solved by the exact method. For a flower snark graph J n , where n is odd and n ≥ 5, we prove that γ wcon ( J n ) = 2 n and γ con ( J n ) = 4 n .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Revista De La Union Matematica Argentina
Revista De La Union Matematica Argentina MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
0.70
自引率
0.00%
发文量
39
审稿时长
>12 weeks
期刊介绍: Revista de la Unión Matemática Argentina is an open access journal, free of charge for both authors and readers. We publish original research articles in all areas of pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信