SGLI热红外数据海面温度的双谱去噪方法

IF 1.9 4区 地球科学 Q2 ENGINEERING, OCEAN
Yukio Kurihara
{"title":"SGLI热红外数据海面温度的双谱去噪方法","authors":"Yukio Kurihara","doi":"10.1175/jtech-d-22-0051.1","DOIUrl":null,"url":null,"abstract":"\nStripe noise is a common issue in Sea Surface Temperatures (SSTs) retrieved from thermal infrared data obtained by satellite-based multi-detector radiometers. We developed a Bi-Spectral Filter (BSF) to reduce the stripe noise. The BSF is a Gaussian filter and an optimal estimation method for the differences between the data obtained at the split window. A kernel function based on the physical processes of radiative transfer has made it possible to reduce stripe and random noise in retrieved SSTs without degrading the spatial resolution or generating bias. The Second-Generation Global Imager (SGLI) is an optical sensor onboard the Global Change Observation Mission-Climate (GCOM-C) satellite. We applied the BSF to SGLI data and validated the retrieved SSTs. The validation results demonstrate the effectiveness of BSF, which reduced stripe noise in the retrieved SGLI SSTs without blurring SST fronts. It also improved the accuracy of the SSTs by about 0.04 K (about 13 %) in the robust standard deviation.","PeriodicalId":15074,"journal":{"name":"Journal of Atmospheric and Oceanic Technology","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2022-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A bi-spectral approach for destriping and denoising the sea surface temperature from SGLI thermal infrared data\",\"authors\":\"Yukio Kurihara\",\"doi\":\"10.1175/jtech-d-22-0051.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nStripe noise is a common issue in Sea Surface Temperatures (SSTs) retrieved from thermal infrared data obtained by satellite-based multi-detector radiometers. We developed a Bi-Spectral Filter (BSF) to reduce the stripe noise. The BSF is a Gaussian filter and an optimal estimation method for the differences between the data obtained at the split window. A kernel function based on the physical processes of radiative transfer has made it possible to reduce stripe and random noise in retrieved SSTs without degrading the spatial resolution or generating bias. The Second-Generation Global Imager (SGLI) is an optical sensor onboard the Global Change Observation Mission-Climate (GCOM-C) satellite. We applied the BSF to SGLI data and validated the retrieved SSTs. The validation results demonstrate the effectiveness of BSF, which reduced stripe noise in the retrieved SGLI SSTs without blurring SST fronts. It also improved the accuracy of the SSTs by about 0.04 K (about 13 %) in the robust standard deviation.\",\"PeriodicalId\":15074,\"journal\":{\"name\":\"Journal of Atmospheric and Oceanic Technology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Atmospheric and Oceanic Technology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1175/jtech-d-22-0051.1\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, OCEAN\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Atmospheric and Oceanic Technology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/jtech-d-22-0051.1","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, OCEAN","Score":null,"Total":0}
引用次数: 0

摘要

条纹噪声是从基于卫星的多探测器辐射计获得的热红外数据中检索到的海面温度(SST)中的一个常见问题。我们开发了一种双谱滤波器(BSF)来减少条纹噪声。BSF是高斯滤波器,是对在分割窗口获得的数据之间的差异的最佳估计方法。基于辐射传输物理过程的核函数使得在不降低空间分辨率或产生偏差的情况下减少检索到的SST中的条纹和随机噪声成为可能。第二代全球成像仪(SGLI)是全球变化观测任务气候(GCOM-C)卫星上的一种光学传感器。我们将BSF应用于SGLI数据,并验证了检索到的SST。验证结果证明了BSF的有效性,它在不模糊SST前沿的情况下降低了检索到的SGLI SST中的条纹噪声。在稳健的标准偏差中,它还将SST的精度提高了约0.04K(约13%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A bi-spectral approach for destriping and denoising the sea surface temperature from SGLI thermal infrared data
Stripe noise is a common issue in Sea Surface Temperatures (SSTs) retrieved from thermal infrared data obtained by satellite-based multi-detector radiometers. We developed a Bi-Spectral Filter (BSF) to reduce the stripe noise. The BSF is a Gaussian filter and an optimal estimation method for the differences between the data obtained at the split window. A kernel function based on the physical processes of radiative transfer has made it possible to reduce stripe and random noise in retrieved SSTs without degrading the spatial resolution or generating bias. The Second-Generation Global Imager (SGLI) is an optical sensor onboard the Global Change Observation Mission-Climate (GCOM-C) satellite. We applied the BSF to SGLI data and validated the retrieved SSTs. The validation results demonstrate the effectiveness of BSF, which reduced stripe noise in the retrieved SGLI SSTs without blurring SST fronts. It also improved the accuracy of the SSTs by about 0.04 K (about 13 %) in the robust standard deviation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.50
自引率
9.10%
发文量
135
审稿时长
3 months
期刊介绍: The Journal of Atmospheric and Oceanic Technology (JTECH) publishes research describing instrumentation and methods used in atmospheric and oceanic research, including remote sensing instruments; measurements, validation, and data analysis techniques from satellites, aircraft, balloons, and surface-based platforms; in situ instruments, measurements, and methods for data acquisition, analysis, and interpretation and assimilation in numerical models; and information systems and algorithms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信