{"title":"随机激励下振动冲击非线性能量汇优化","authors":"Jiamin Qian , Lincong Chen","doi":"10.1016/j.taml.2022.100364","DOIUrl":null,"url":null,"abstract":"<div><p>As a promising vibration control device, the vibro-impact nonlinear energy sink (VI-NES) gathered extensively attention in recent years. However, general optimization procedures have not been available for the design of VI-NES subjected to random excitations. To this end, this paper constitutes a research effort to address this gap. Specifically, the approximate analytical solution of the system stochastic response is obtained in conjunction with non-smooth conversion and stochastic averaging methodology. Taking advantages of this approximate solution, the variance of the system is defined and easily minimized to calculate the optimal parameters for VI-NES. In addition, the results computed by this way fairly correlate with direct numeric simulations.</p></div>","PeriodicalId":46902,"journal":{"name":"Theoretical and Applied Mechanics Letters","volume":"12 5","pages":"Article 100364"},"PeriodicalIF":3.2000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2095034922000447/pdfft?md5=badd93986d39d1709dd47ee77e5ae01a&pid=1-s2.0-S2095034922000447-main.pdf","citationCount":"1","resultStr":"{\"title\":\"Optimization for vibro-impact nonlinear energy sink under random excitation\",\"authors\":\"Jiamin Qian , Lincong Chen\",\"doi\":\"10.1016/j.taml.2022.100364\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>As a promising vibration control device, the vibro-impact nonlinear energy sink (VI-NES) gathered extensively attention in recent years. However, general optimization procedures have not been available for the design of VI-NES subjected to random excitations. To this end, this paper constitutes a research effort to address this gap. Specifically, the approximate analytical solution of the system stochastic response is obtained in conjunction with non-smooth conversion and stochastic averaging methodology. Taking advantages of this approximate solution, the variance of the system is defined and easily minimized to calculate the optimal parameters for VI-NES. In addition, the results computed by this way fairly correlate with direct numeric simulations.</p></div>\",\"PeriodicalId\":46902,\"journal\":{\"name\":\"Theoretical and Applied Mechanics Letters\",\"volume\":\"12 5\",\"pages\":\"Article 100364\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2095034922000447/pdfft?md5=badd93986d39d1709dd47ee77e5ae01a&pid=1-s2.0-S2095034922000447-main.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Applied Mechanics Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2095034922000447\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Mechanics Letters","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095034922000447","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
Optimization for vibro-impact nonlinear energy sink under random excitation
As a promising vibration control device, the vibro-impact nonlinear energy sink (VI-NES) gathered extensively attention in recent years. However, general optimization procedures have not been available for the design of VI-NES subjected to random excitations. To this end, this paper constitutes a research effort to address this gap. Specifically, the approximate analytical solution of the system stochastic response is obtained in conjunction with non-smooth conversion and stochastic averaging methodology. Taking advantages of this approximate solution, the variance of the system is defined and easily minimized to calculate the optimal parameters for VI-NES. In addition, the results computed by this way fairly correlate with direct numeric simulations.
期刊介绍:
An international journal devoted to rapid communications on novel and original research in the field of mechanics. TAML aims at publishing novel, cutting edge researches in theoretical, computational, and experimental mechanics. The journal provides fast publication of letter-sized articles and invited reviews within 3 months. We emphasize highlighting advances in science, engineering, and technology with originality and rapidity. Contributions include, but are not limited to, a variety of topics such as: • Aerospace and Aeronautical Engineering • Coastal and Ocean Engineering • Environment and Energy Engineering • Material and Structure Engineering • Biomedical Engineering • Mechanical and Transportation Engineering • Civil and Hydraulic Engineering Theoretical and Applied Mechanics Letters (TAML) was launched in 2011 and sponsored by Institute of Mechanics, Chinese Academy of Sciences (IMCAS) and The Chinese Society of Theoretical and Applied Mechanics (CSTAM). It is the official publication the Beijing International Center for Theoretical and Applied Mechanics (BICTAM).