{"title":"基于指纹的室内定位深度学习方法综述","authors":"Fahad Al-homayani, M. Mahoor","doi":"10.1080/17489725.2020.1817582","DOIUrl":null,"url":null,"abstract":"ABSTRACT Outdoor positioning systems based on the Global Navigation Satellite System have several shortcomings that have deemed their use for indoor positioning impractical. Location fingerprinting, which utilizes machine learning, has emerged as a viable method and solution for indoor positioning due to its simple concept and accurate performance. In the past, shallow learning algorithms were traditionally used in location fingerprinting. Recently, the research community started utilizing deep learning methods for fingerprinting after witnessing the great success and superiority these methods have over traditional/shallow machine learning algorithms. This paper provides a comprehensive review of deep learning methods in indoor positioning. First, the advantages and disadvantages of various fingerprint types for indoor positioning are discussed. The solutions proposed in the literature are then analyzed, categorized, and compared against various performance evaluation metrics. Since data is key in fingerprinting, a detailed review of publicly available indoor positioning datasets is presented. While incorporating deep learning into fingerprinting has resulted in significant improvements, doing so, has also introduced new challenges. These challenges along with the common implementation pitfalls are discussed. Finally, the paper is concluded with some remarks as well as future research trends.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/17489725.2020.1817582","citationCount":"41","resultStr":"{\"title\":\"Deep learning methods for fingerprint-based indoor positioning: a review\",\"authors\":\"Fahad Al-homayani, M. Mahoor\",\"doi\":\"10.1080/17489725.2020.1817582\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Outdoor positioning systems based on the Global Navigation Satellite System have several shortcomings that have deemed their use for indoor positioning impractical. Location fingerprinting, which utilizes machine learning, has emerged as a viable method and solution for indoor positioning due to its simple concept and accurate performance. In the past, shallow learning algorithms were traditionally used in location fingerprinting. Recently, the research community started utilizing deep learning methods for fingerprinting after witnessing the great success and superiority these methods have over traditional/shallow machine learning algorithms. This paper provides a comprehensive review of deep learning methods in indoor positioning. First, the advantages and disadvantages of various fingerprint types for indoor positioning are discussed. The solutions proposed in the literature are then analyzed, categorized, and compared against various performance evaluation metrics. Since data is key in fingerprinting, a detailed review of publicly available indoor positioning datasets is presented. While incorporating deep learning into fingerprinting has resulted in significant improvements, doing so, has also introduced new challenges. These challenges along with the common implementation pitfalls are discussed. Finally, the paper is concluded with some remarks as well as future research trends.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2020-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/17489725.2020.1817582\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/17489725.2020.1817582\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17489725.2020.1817582","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Deep learning methods for fingerprint-based indoor positioning: a review
ABSTRACT Outdoor positioning systems based on the Global Navigation Satellite System have several shortcomings that have deemed their use for indoor positioning impractical. Location fingerprinting, which utilizes machine learning, has emerged as a viable method and solution for indoor positioning due to its simple concept and accurate performance. In the past, shallow learning algorithms were traditionally used in location fingerprinting. Recently, the research community started utilizing deep learning methods for fingerprinting after witnessing the great success and superiority these methods have over traditional/shallow machine learning algorithms. This paper provides a comprehensive review of deep learning methods in indoor positioning. First, the advantages and disadvantages of various fingerprint types for indoor positioning are discussed. The solutions proposed in the literature are then analyzed, categorized, and compared against various performance evaluation metrics. Since data is key in fingerprinting, a detailed review of publicly available indoor positioning datasets is presented. While incorporating deep learning into fingerprinting has resulted in significant improvements, doing so, has also introduced new challenges. These challenges along with the common implementation pitfalls are discussed. Finally, the paper is concluded with some remarks as well as future research trends.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.