Asao–Izumihara复形图的幅同源性和离散Morse理论

IF 0.8 4区 数学 Q2 MATHEMATICS
Yusuke Tajima, M. Yoshinaga
{"title":"Asao–Izumihara复形图的幅同源性和离散Morse理论","authors":"Yusuke Tajima, M. Yoshinaga","doi":"10.4310/hha.2023.v25.n1.a17","DOIUrl":null,"url":null,"abstract":"Recently, Asao and Izumihara introduced CW-complexes whose homology groups are isomorphic to direct summands of the graph magnitude homology group. In this paper, we study the homotopy type of the CW-complexes in connection with the diagonality of magnitude homology groups. We prove that the Asao-Izumihara complex is homotopy equivalent to a wedge of spheres for pawful graphs introduced by Y. Gu. The result can be considered as a homotopy type version of Gu's result. We also formulate a slight generalization of the notion of pawful graphs and find new non-pawful diagonal graphs of diameter $2$.","PeriodicalId":55050,"journal":{"name":"Homology Homotopy and Applications","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2021-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Magnitude homology of graphs and discrete Morse theory on Asao–Izumihara complexes\",\"authors\":\"Yusuke Tajima, M. Yoshinaga\",\"doi\":\"10.4310/hha.2023.v25.n1.a17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, Asao and Izumihara introduced CW-complexes whose homology groups are isomorphic to direct summands of the graph magnitude homology group. In this paper, we study the homotopy type of the CW-complexes in connection with the diagonality of magnitude homology groups. We prove that the Asao-Izumihara complex is homotopy equivalent to a wedge of spheres for pawful graphs introduced by Y. Gu. The result can be considered as a homotopy type version of Gu's result. We also formulate a slight generalization of the notion of pawful graphs and find new non-pawful diagonal graphs of diameter $2$.\",\"PeriodicalId\":55050,\"journal\":{\"name\":\"Homology Homotopy and Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Homology Homotopy and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/hha.2023.v25.n1.a17\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Homology Homotopy and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/hha.2023.v25.n1.a17","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

最近,Asao和Izumihara引入了同调群与图大小同调群的直和同构的cw -配合物。本文从量级同调群的对角性出发,研究了cw -配合物的同伦类型。我们证明了由Y. Gu引入的泛图的Asao-Izumihara复合体是同伦等价于球的楔形。这个结果可以看作是Gu结果的同伦型版本。我们还对pawful图的概念进行了稍微的推广,并找到了新的直径为$2$的非pawful对角线图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Magnitude homology of graphs and discrete Morse theory on Asao–Izumihara complexes
Recently, Asao and Izumihara introduced CW-complexes whose homology groups are isomorphic to direct summands of the graph magnitude homology group. In this paper, we study the homotopy type of the CW-complexes in connection with the diagonality of magnitude homology groups. We prove that the Asao-Izumihara complex is homotopy equivalent to a wedge of spheres for pawful graphs introduced by Y. Gu. The result can be considered as a homotopy type version of Gu's result. We also formulate a slight generalization of the notion of pawful graphs and find new non-pawful diagonal graphs of diameter $2$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
37
审稿时长
>12 weeks
期刊介绍: Homology, Homotopy and Applications is a refereed journal which publishes high-quality papers in the general area of homotopy theory and algebraic topology, as well as applications of the ideas and results in this area. This means applications in the broadest possible sense, i.e. applications to other parts of mathematics such as number theory and algebraic geometry, as well as to areas outside of mathematics, such as computer science, physics, and statistics. Homotopy theory is also intended to be interpreted broadly, including algebraic K-theory, model categories, homotopy theory of varieties, etc. We particularly encourage innovative papers which point the way toward new applications of the subject.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信