海洋系统中基因流动的形态

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Gerrit Potkamp, C. Fransen
{"title":"海洋系统中基因流动的形态","authors":"Gerrit Potkamp, C. Fransen","doi":"10.1163/18759866-20191344","DOIUrl":null,"url":null,"abstract":"Over the last century, a large body of literature emerged on mechanisms driving speciation. Most of the research into these questions focussed on terrestrial systems, while research in marine systems lagged behind. Here, we review the population genetic mechanisms and geographic context of 33 potential cases of speciation with gene flow in the marine realm, using six criteria inferred from theoretical models of speciation. Speciation with gene flow occurs in a wide range of marine taxa. Single traits, which induce assortative mating and are subjected to disruptive selection, such as differences in host-associations in invertebrates or colour pattern in tropical fish, are potentially responsible for a decrease in gene flow and may be driving divergence in the majority of cases. However, much remains unknown, and with the current knowledge, the frequency of ecological speciation with gene flow in marine systems remains difficult to estimate. Standardized, generally applicable statistical methods, explicitly testing different hypotheses of speciation, are, going forward, required to confidently infer speciation with gene flow.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2019-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1163/18759866-20191344","citationCount":"23","resultStr":"{\"title\":\"Speciation with gene flow in marine systems\",\"authors\":\"Gerrit Potkamp, C. Fransen\",\"doi\":\"10.1163/18759866-20191344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Over the last century, a large body of literature emerged on mechanisms driving speciation. Most of the research into these questions focussed on terrestrial systems, while research in marine systems lagged behind. Here, we review the population genetic mechanisms and geographic context of 33 potential cases of speciation with gene flow in the marine realm, using six criteria inferred from theoretical models of speciation. Speciation with gene flow occurs in a wide range of marine taxa. Single traits, which induce assortative mating and are subjected to disruptive selection, such as differences in host-associations in invertebrates or colour pattern in tropical fish, are potentially responsible for a decrease in gene flow and may be driving divergence in the majority of cases. However, much remains unknown, and with the current knowledge, the frequency of ecological speciation with gene flow in marine systems remains difficult to estimate. Standardized, generally applicable statistical methods, explicitly testing different hypotheses of speciation, are, going forward, required to confidently infer speciation with gene flow.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2019-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1163/18759866-20191344\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1163/18759866-20191344\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1163/18759866-20191344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 23

摘要

在上个世纪,出现了大量关于驱动物种形成机制的文献。对这些问题的研究大多集中在陆地系统,而对海洋系统的研究滞后。本文利用从物种形成理论模型中推断出的6个标准,回顾了33个具有基因流动的海洋领域物种形成的潜在案例的种群遗传机制和地理环境。基因流动的物种形成发生在广泛的海洋分类群中。单一性状,诱导选择性交配并受到破坏性选择的影响,如无脊椎动物的宿主关联差异或热带鱼的颜色模式差异,可能导致基因流动减少,并可能在大多数情况下导致分化。然而,仍有许多未知之处,并且以目前的知识,海洋系统中基因流动的生态物种形成的频率仍然难以估计。标准化的,普遍适用的统计方法,明确地测试不同的物种形成假设,在未来,需要自信地推断基因流动的物种形成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Speciation with gene flow in marine systems
Over the last century, a large body of literature emerged on mechanisms driving speciation. Most of the research into these questions focussed on terrestrial systems, while research in marine systems lagged behind. Here, we review the population genetic mechanisms and geographic context of 33 potential cases of speciation with gene flow in the marine realm, using six criteria inferred from theoretical models of speciation. Speciation with gene flow occurs in a wide range of marine taxa. Single traits, which induce assortative mating and are subjected to disruptive selection, such as differences in host-associations in invertebrates or colour pattern in tropical fish, are potentially responsible for a decrease in gene flow and may be driving divergence in the majority of cases. However, much remains unknown, and with the current knowledge, the frequency of ecological speciation with gene flow in marine systems remains difficult to estimate. Standardized, generally applicable statistical methods, explicitly testing different hypotheses of speciation, are, going forward, required to confidently infer speciation with gene flow.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信