Burgers方程的周期波冲击解

IF 0.1 Q4 MATHEMATICS
Saida Bendaas
{"title":"Burgers方程的周期波冲击解","authors":"Saida Bendaas","doi":"10.1080/25742558.2018.1463597","DOIUrl":null,"url":null,"abstract":"In this paper, we present an new approach for the study of Burgers equations. Our purpose is to describe the asymptotic behavior of the solution in the cauchy problem for viscid equation with small parameter and to discuss in particular the case of periodic wave shock. We show that the solution of this problem approaches the shock-type solution for the cauchy problem of the inviscid burgers equation. The results are formulated in classical mathematics and proved with infinitesimal techniques of nonstandard analysis.","PeriodicalId":92618,"journal":{"name":"Cogent mathematics & statistics","volume":null,"pages":null},"PeriodicalIF":0.1000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/25742558.2018.1463597","citationCount":"11","resultStr":"{\"title\":\"Periodic wave shock solutions of Burgers equations\",\"authors\":\"Saida Bendaas\",\"doi\":\"10.1080/25742558.2018.1463597\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present an new approach for the study of Burgers equations. Our purpose is to describe the asymptotic behavior of the solution in the cauchy problem for viscid equation with small parameter and to discuss in particular the case of periodic wave shock. We show that the solution of this problem approaches the shock-type solution for the cauchy problem of the inviscid burgers equation. The results are formulated in classical mathematics and proved with infinitesimal techniques of nonstandard analysis.\",\"PeriodicalId\":92618,\"journal\":{\"name\":\"Cogent mathematics & statistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/25742558.2018.1463597\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cogent mathematics & statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/25742558.2018.1463597\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cogent mathematics & statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/25742558.2018.1463597","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 11

摘要

本文提出了研究Burgers方程的一种新方法。我们的目的是描述小参数粘性方程柯西问题解的渐近性质,并特别讨论周期波激波的情况。证明了该问题的解近似于无粘burgers方程柯西问题的激波型解。结果用经典数学的形式表示,并用非标准分析的无穷小技术证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Periodic wave shock solutions of Burgers equations
In this paper, we present an new approach for the study of Burgers equations. Our purpose is to describe the asymptotic behavior of the solution in the cauchy problem for viscid equation with small parameter and to discuss in particular the case of periodic wave shock. We show that the solution of this problem approaches the shock-type solution for the cauchy problem of the inviscid burgers equation. The results are formulated in classical mathematics and proved with infinitesimal techniques of nonstandard analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信