基于监督学习的心血管疾病分类

Arif Hussain, Hassaan Malik, Muhammad Umar Chaudhry
{"title":"基于监督学习的心血管疾病分类","authors":"Arif Hussain, Hassaan Malik, Muhammad Umar Chaudhry","doi":"10.46604/peti.2021.7217","DOIUrl":null,"url":null,"abstract":"Detecting cardiovascular disease (CVD) in the early stage is a difficult and crucial process. The objective of this study is to test the capability of machine learning (ML) methods for accurately diagnosing the CVD outcomes. For this study, the efficiency and effectiveness of four well renowned ML classifiers, i.e., support vector machine (SVM), logistics regression (LR), naive Bayes (NB), and decision tree (J48), are measured in terms of precision, sensitivity, specificity, accuracy, Matthews correlation coefficient (MCC), correctly and incorrectly classified instances, and model building time. These ML classifiers are applied on publically available CVD dataset. In accordance with the measured result, J48 performs better than its competitor classifiers, providing significant assistance to the cardiologists.","PeriodicalId":33402,"journal":{"name":"Proceedings of Engineering and Technology Innovation","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Supervised Learning Based Classification of Cardiovascular Diseases\",\"authors\":\"Arif Hussain, Hassaan Malik, Muhammad Umar Chaudhry\",\"doi\":\"10.46604/peti.2021.7217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Detecting cardiovascular disease (CVD) in the early stage is a difficult and crucial process. The objective of this study is to test the capability of machine learning (ML) methods for accurately diagnosing the CVD outcomes. For this study, the efficiency and effectiveness of four well renowned ML classifiers, i.e., support vector machine (SVM), logistics regression (LR), naive Bayes (NB), and decision tree (J48), are measured in terms of precision, sensitivity, specificity, accuracy, Matthews correlation coefficient (MCC), correctly and incorrectly classified instances, and model building time. These ML classifiers are applied on publically available CVD dataset. In accordance with the measured result, J48 performs better than its competitor classifiers, providing significant assistance to the cardiologists.\",\"PeriodicalId\":33402,\"journal\":{\"name\":\"Proceedings of Engineering and Technology Innovation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Engineering and Technology Innovation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46604/peti.2021.7217\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Engineering and Technology Innovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46604/peti.2021.7217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

早期发现心血管疾病(CVD)是一个困难而关键的过程。本研究的目的是测试机器学习(ML)方法准确诊断心血管疾病结果的能力。在本研究中,四种著名的机器学习分类器,即支持向量机(SVM),物流回归(LR),朴素贝叶斯(NB)和决策树(J48)的效率和有效性,在精度,灵敏度,特异性,准确性,马修斯相关系数(MCC),正确和错误分类的实例,以及模型构建时间方面进行了衡量。这些ML分类器应用于公开可用的CVD数据集。根据测量结果,J48的表现优于其竞争对手的分类器,为心脏病专家提供了重要的帮助。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Supervised Learning Based Classification of Cardiovascular Diseases
Detecting cardiovascular disease (CVD) in the early stage is a difficult and crucial process. The objective of this study is to test the capability of machine learning (ML) methods for accurately diagnosing the CVD outcomes. For this study, the efficiency and effectiveness of four well renowned ML classifiers, i.e., support vector machine (SVM), logistics regression (LR), naive Bayes (NB), and decision tree (J48), are measured in terms of precision, sensitivity, specificity, accuracy, Matthews correlation coefficient (MCC), correctly and incorrectly classified instances, and model building time. These ML classifiers are applied on publically available CVD dataset. In accordance with the measured result, J48 performs better than its competitor classifiers, providing significant assistance to the cardiologists.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
12
审稿时长
18 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信