{"title":"关于环面Deligne-Mumford堆上最大长度线束的强例外集合","authors":"L. Borisov, Chengxi Wang","doi":"10.4310/ajm.2021.v25.n4.a3","DOIUrl":null,"url":null,"abstract":"We study strong exceptional collections of line bundles on Fano toric Deligne-Mumford stacks $\\mathbb{P}_{\\mathbf{\\Sigma}}$ with rank of Picard group at most two. We prove that any strong exceptional collection of line bundles generates the derived category of $\\mathbb{P}_{\\mathbf{\\Sigma}}$, as long as the number of elements in the collection equals the rank of the (Grothendieck) $K$-theory group of $\\mathbb{P}_{\\mathbf{\\Sigma}}$.","PeriodicalId":55452,"journal":{"name":"Asian Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2019-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On strong exceptional collections of line bundles of maximal length on fano toric Deligne–Mumford stacks\",\"authors\":\"L. Borisov, Chengxi Wang\",\"doi\":\"10.4310/ajm.2021.v25.n4.a3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study strong exceptional collections of line bundles on Fano toric Deligne-Mumford stacks $\\\\mathbb{P}_{\\\\mathbf{\\\\Sigma}}$ with rank of Picard group at most two. We prove that any strong exceptional collection of line bundles generates the derived category of $\\\\mathbb{P}_{\\\\mathbf{\\\\Sigma}}$, as long as the number of elements in the collection equals the rank of the (Grothendieck) $K$-theory group of $\\\\mathbb{P}_{\\\\mathbf{\\\\Sigma}}$.\",\"PeriodicalId\":55452,\"journal\":{\"name\":\"Asian Journal of Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2019-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/ajm.2021.v25.n4.a3\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/ajm.2021.v25.n4.a3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
On strong exceptional collections of line bundles of maximal length on fano toric Deligne–Mumford stacks
We study strong exceptional collections of line bundles on Fano toric Deligne-Mumford stacks $\mathbb{P}_{\mathbf{\Sigma}}$ with rank of Picard group at most two. We prove that any strong exceptional collection of line bundles generates the derived category of $\mathbb{P}_{\mathbf{\Sigma}}$, as long as the number of elements in the collection equals the rank of the (Grothendieck) $K$-theory group of $\mathbb{P}_{\mathbf{\Sigma}}$.