{"title":"理想切赫封闭空间的触点","authors":"A. Al-Omari, R. Gargouri, T. Noiri","doi":"10.24193/mathcluj.2022.2.02","DOIUrl":null,"url":null,"abstract":"\"Let (X, f, I) be a Cech closure space with an ideal I. We investigate the properties of so-called Cech touch points and construct a topology on X from the touch points. Moreover, in a Cech closure space (X, f, I) with an ideal I , we define the notion of f-compatibility with the ideal I and obtain several characterizations of this type of compatibility.\"","PeriodicalId":39356,"journal":{"name":"Mathematica","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Touch points in ideal Cech closure spaces\",\"authors\":\"A. Al-Omari, R. Gargouri, T. Noiri\",\"doi\":\"10.24193/mathcluj.2022.2.02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\\"Let (X, f, I) be a Cech closure space with an ideal I. We investigate the properties of so-called Cech touch points and construct a topology on X from the touch points. Moreover, in a Cech closure space (X, f, I) with an ideal I , we define the notion of f-compatibility with the ideal I and obtain several characterizations of this type of compatibility.\\\"\",\"PeriodicalId\":39356,\"journal\":{\"name\":\"Mathematica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24193/mathcluj.2022.2.02\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24193/mathcluj.2022.2.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
"Let (X, f, I) be a Cech closure space with an ideal I. We investigate the properties of so-called Cech touch points and construct a topology on X from the touch points. Moreover, in a Cech closure space (X, f, I) with an ideal I , we define the notion of f-compatibility with the ideal I and obtain several characterizations of this type of compatibility."