傅里叶级数的Riesz可和因子

IF 0.3 Q4 MATHEMATICS
Şebnem Yildiz
{"title":"傅里叶级数的Riesz可和因子","authors":"Şebnem Yildiz","doi":"10.1016/j.trmi.2017.06.003","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, a main theorem dealing with <span><math><mo>|</mo><mover><mrow><mi>N</mi></mrow><mrow><mo>̄</mo></mrow></mover><mo>,</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msub><msub><mrow><mo>|</mo></mrow><mrow><mi>k</mi></mrow></msub></math></span> summability method has been generalized for <span><math><mi>φ</mi><mo>−</mo><mo>|</mo><mover><mrow><mi>N</mi></mrow><mrow><mo>̄</mo></mrow></mover><mo>,</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>;</mo><mi>δ</mi><msub><mrow><mo>|</mo></mrow><mrow><mi>k</mi></mrow></msub></math></span> summability by using different and general summability factors of Fourier series.</p></div>","PeriodicalId":43623,"journal":{"name":"Transactions of A Razmadze Mathematical Institute","volume":"171 3","pages":"Pages 328-331"},"PeriodicalIF":0.3000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.trmi.2017.06.003","citationCount":"9","resultStr":"{\"title\":\"On Riesz summability factors of Fourier series\",\"authors\":\"Şebnem Yildiz\",\"doi\":\"10.1016/j.trmi.2017.06.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, a main theorem dealing with <span><math><mo>|</mo><mover><mrow><mi>N</mi></mrow><mrow><mo>̄</mo></mrow></mover><mo>,</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msub><msub><mrow><mo>|</mo></mrow><mrow><mi>k</mi></mrow></msub></math></span> summability method has been generalized for <span><math><mi>φ</mi><mo>−</mo><mo>|</mo><mover><mrow><mi>N</mi></mrow><mrow><mo>̄</mo></mrow></mover><mo>,</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>;</mo><mi>δ</mi><msub><mrow><mo>|</mo></mrow><mrow><mi>k</mi></mrow></msub></math></span> summability by using different and general summability factors of Fourier series.</p></div>\",\"PeriodicalId\":43623,\"journal\":{\"name\":\"Transactions of A Razmadze Mathematical Institute\",\"volume\":\"171 3\",\"pages\":\"Pages 328-331\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.trmi.2017.06.003\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of A Razmadze Mathematical Institute\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2346809217300181\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of A Razmadze Mathematical Institute","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2346809217300181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 9

摘要

本文利用傅里叶级数的不同和一般可求和因子,推广了φ−N,pn;δ|k可求和方法的一个主要定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Riesz summability factors of Fourier series

In this paper, a main theorem dealing with |N̄,pn|k summability method has been generalized for φ|N̄,pn;δ|k summability by using different and general summability factors of Fourier series.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.50
自引率
50.00%
发文量
0
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信