什么是基因组高风险骨髓瘤?

IF 0.9 Q4 HEMATOLOGY
Hemato Pub Date : 2022-04-05 DOI:10.3390/hemato3020021
F. Davies, B. Walker
{"title":"什么是基因组高风险骨髓瘤?","authors":"F. Davies, B. Walker","doi":"10.3390/hemato3020021","DOIUrl":null,"url":null,"abstract":"Although treatment of multiple myeloma has changed dramatically over time, there is still a subpopulation of patients who do not respond to treatments and are labeled as high risk. A combination of serum and genomic markers can be used to identify and stratify these patients according to associations with outcome. The most common method of identifying the genomic markers of high-risk multiple myeloma is using fluorescence in situ hybridization using probes to identify IgH translocations or copy number changes including the t(4;14), t(14;16), t(14;20), gain 1q, and del(17p). However, as research studies utilize newer technologies, such as whole genome sequencing, more high-risk factors are being identified including mutations of TP53, DIS3, BRAF, and complex structural events. Integration of comprehensive genomic studies into clinical trials will aid in defining the genomic high-risk landscape of multiple myeloma, which in turn can be transferred to individual patient diagnostics and treatment management.","PeriodicalId":93705,"journal":{"name":"Hemato","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"What Is Genomic High-Risk Myeloma?\",\"authors\":\"F. Davies, B. Walker\",\"doi\":\"10.3390/hemato3020021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although treatment of multiple myeloma has changed dramatically over time, there is still a subpopulation of patients who do not respond to treatments and are labeled as high risk. A combination of serum and genomic markers can be used to identify and stratify these patients according to associations with outcome. The most common method of identifying the genomic markers of high-risk multiple myeloma is using fluorescence in situ hybridization using probes to identify IgH translocations or copy number changes including the t(4;14), t(14;16), t(14;20), gain 1q, and del(17p). However, as research studies utilize newer technologies, such as whole genome sequencing, more high-risk factors are being identified including mutations of TP53, DIS3, BRAF, and complex structural events. Integration of comprehensive genomic studies into clinical trials will aid in defining the genomic high-risk landscape of multiple myeloma, which in turn can be transferred to individual patient diagnostics and treatment management.\",\"PeriodicalId\":93705,\"journal\":{\"name\":\"Hemato\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hemato\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/hemato3020021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"HEMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hemato","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/hemato3020021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

尽管随着时间的推移,多发性骨髓瘤的治疗方法发生了巨大的变化,但仍有一小部分患者对治疗没有反应,并被标记为高风险。血清和基因组标记的组合可用于根据与结果的关联对这些患者进行识别和分层。鉴定高风险多发性骨髓瘤基因组标记最常用的方法是使用荧光原位杂交,利用探针鉴定IgH易位或拷贝数变化,包括t(4;14)、t(14;16)、t(14;20)、增益1q和del(17p)。然而,随着研究利用全基因组测序等新技术,更多的高危因素被发现,包括TP53、DIS3、BRAF突变和复杂的结构事件。将全面的基因组研究整合到临床试验中,将有助于确定多发性骨髓瘤的基因组高风险格局,进而可以转移到个体患者的诊断和治疗管理中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
What Is Genomic High-Risk Myeloma?
Although treatment of multiple myeloma has changed dramatically over time, there is still a subpopulation of patients who do not respond to treatments and are labeled as high risk. A combination of serum and genomic markers can be used to identify and stratify these patients according to associations with outcome. The most common method of identifying the genomic markers of high-risk multiple myeloma is using fluorescence in situ hybridization using probes to identify IgH translocations or copy number changes including the t(4;14), t(14;16), t(14;20), gain 1q, and del(17p). However, as research studies utilize newer technologies, such as whole genome sequencing, more high-risk factors are being identified including mutations of TP53, DIS3, BRAF, and complex structural events. Integration of comprehensive genomic studies into clinical trials will aid in defining the genomic high-risk landscape of multiple myeloma, which in turn can be transferred to individual patient diagnostics and treatment management.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信