角构件压缩能力的校准设计模型——考虑焊接或螺栓连接配置

IF 1.2 Q3 CONSTRUCTION & BUILDING TECHNOLOGY
H. Unterweger, M. Kettler, P. Zauchner
{"title":"角构件压缩能力的校准设计模型——考虑焊接或螺栓连接配置","authors":"H. Unterweger, M. Kettler, P. Zauchner","doi":"10.1002/stco.202200023","DOIUrl":null,"url":null,"abstract":"Due to the commonly eccentric connection on only one angle leg (bolted or welded), additional bending moments are acting on the angle member under compression axial force, leading to a complex load‐carrying behaviour with flexural and/or flexural torsional buckling phenomena. Furthermore, type and size of rotational restraints at the member's ends (provided by the adjacent structure) significantly influence the compression capacity of these members. In this article, a recently developed design model for angle members in compression with welded or bolted end connection is presented. The design model considers the accurate rotational spring stiffness of three common joint types. The presented procedure allows for calculating the internal forces based on elastic second‐order theory for an individual member with eccentricities, equivalent geometric imperfection and rotational spring stiffness at both ends. The detailed analytical equations for the rotational spring stiffness of all studied joint configurations are summed up. In addition, calibration factors fDi are presented, to get accurate compression capacities with the design model. Finally, the accuracy of the design model for all three studied joint types of angle members with welded connections is shown through comparison with sophisticated finite element calculations, code provisions (EN 1993‐1‐1, AISC) and experimental tests from the literature.","PeriodicalId":54183,"journal":{"name":"Steel Construction-Design and Research","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2022-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Calibrated design model for the compression capacity of angle members – Consideration of welded or bolted joint configurations\",\"authors\":\"H. Unterweger, M. Kettler, P. Zauchner\",\"doi\":\"10.1002/stco.202200023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the commonly eccentric connection on only one angle leg (bolted or welded), additional bending moments are acting on the angle member under compression axial force, leading to a complex load‐carrying behaviour with flexural and/or flexural torsional buckling phenomena. Furthermore, type and size of rotational restraints at the member's ends (provided by the adjacent structure) significantly influence the compression capacity of these members. In this article, a recently developed design model for angle members in compression with welded or bolted end connection is presented. The design model considers the accurate rotational spring stiffness of three common joint types. The presented procedure allows for calculating the internal forces based on elastic second‐order theory for an individual member with eccentricities, equivalent geometric imperfection and rotational spring stiffness at both ends. The detailed analytical equations for the rotational spring stiffness of all studied joint configurations are summed up. In addition, calibration factors fDi are presented, to get accurate compression capacities with the design model. Finally, the accuracy of the design model for all three studied joint types of angle members with welded connections is shown through comparison with sophisticated finite element calculations, code provisions (EN 1993‐1‐1, AISC) and experimental tests from the literature.\",\"PeriodicalId\":54183,\"journal\":{\"name\":\"Steel Construction-Design and Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Steel Construction-Design and Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/stco.202200023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Steel Construction-Design and Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/stco.202200023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 2

摘要

由于通常只在一个角腿(螺栓或焊接)上偏心连接,额外的弯矩作用在角构件上,承受轴向压缩力,导致复杂的承载行为,包括弯曲和/或弯曲扭转屈曲现象。此外,构件端部旋转约束的类型和尺寸(由相邻结构提供)显著影响这些构件的抗压能力。本文介绍了一种最近发展起来的角构件焊接或螺栓连接的受压设计模型。该设计模型考虑了三种常见关节类型的精确旋转弹簧刚度。所提出的程序允许基于弹性二阶理论计算具有偏心、等效几何缺陷和两端旋转弹簧刚度的单个构件的内力。总结了所研究的各种关节构型的旋转弹簧刚度的详细解析方程。此外,还提出了校正因子fDi,以便利用设计模型得到准确的压缩能力。最后,通过与复杂的有限元计算、规范规定(EN 1993‐1‐1,AISC)和文献中的实验测试进行比较,证明了所研究的三种带有焊接连接的角构件连接类型的设计模型的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Calibrated design model for the compression capacity of angle members – Consideration of welded or bolted joint configurations
Due to the commonly eccentric connection on only one angle leg (bolted or welded), additional bending moments are acting on the angle member under compression axial force, leading to a complex load‐carrying behaviour with flexural and/or flexural torsional buckling phenomena. Furthermore, type and size of rotational restraints at the member's ends (provided by the adjacent structure) significantly influence the compression capacity of these members. In this article, a recently developed design model for angle members in compression with welded or bolted end connection is presented. The design model considers the accurate rotational spring stiffness of three common joint types. The presented procedure allows for calculating the internal forces based on elastic second‐order theory for an individual member with eccentricities, equivalent geometric imperfection and rotational spring stiffness at both ends. The detailed analytical equations for the rotational spring stiffness of all studied joint configurations are summed up. In addition, calibration factors fDi are presented, to get accurate compression capacities with the design model. Finally, the accuracy of the design model for all three studied joint types of angle members with welded connections is shown through comparison with sophisticated finite element calculations, code provisions (EN 1993‐1‐1, AISC) and experimental tests from the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Steel Construction-Design and Research
Steel Construction-Design and Research CONSTRUCTION & BUILDING TECHNOLOGY-
CiteScore
3.00
自引率
6.20%
发文量
63
期刊介绍: Steel Construction publishes peerreviewed papers covering the entire field of steel construction research. In the interests of "construction without depletion", it skilfully combines steel with other forms of construction employing concrete, glass, cables and membranes to form integrated steelwork systems. Since 2010 Steel Construction is the official journal for ECCS- European Convention for Constructional Steelwork members. You will find more information about membership on the ECCS homepage. Topics include: -Design and construction of structures -Methods of analysis and calculation -Experimental and theoretical research projects and results -Composite construction -Steel buildings and bridges -Cable and membrane structures -Structural glazing -Masts and towers -Vessels, cranes and hydraulic engineering structures -Fire protection -Lightweight structures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信