SU_q(N)和U_ q(N)的Hunt公式

IF 1.2 2区 数学 Q1 MATHEMATICS
U. Franz, A. Kula, J. Lindsay, Michael Skeide
{"title":"SU_q(N)和U_ q(N)的Hunt公式","authors":"U. Franz, A. Kula, J. Lindsay, Michael Skeide","doi":"10.1512/iumj.2023.72.9485","DOIUrl":null,"url":null,"abstract":"We provide a Hunt type formula for the infinitesimal generators of Levy process on the quantum groups $SU_q(N)$ and $U_q(N)$. In particular, we obtain a decomposition of such generators into a gaussian part and a `jump type' part determined by a linear functional that resembles the functional induced by the Levy measure. The jump part on $SU_q(N)$ decomposes further into parts that live on the quantum subgroups $SU_q(n)$, $n\\le N$. Like in the classical Hunt formula for locally compact Lie groups, the ingredients become unique once a certain projection is chosen. There are analogous result for $U_q(N)$.","PeriodicalId":50369,"journal":{"name":"Indiana University Mathematics Journal","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2020-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Hunt's formula for SU_q(N) and U_q(N)\",\"authors\":\"U. Franz, A. Kula, J. Lindsay, Michael Skeide\",\"doi\":\"10.1512/iumj.2023.72.9485\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We provide a Hunt type formula for the infinitesimal generators of Levy process on the quantum groups $SU_q(N)$ and $U_q(N)$. In particular, we obtain a decomposition of such generators into a gaussian part and a `jump type' part determined by a linear functional that resembles the functional induced by the Levy measure. The jump part on $SU_q(N)$ decomposes further into parts that live on the quantum subgroups $SU_q(n)$, $n\\\\le N$. Like in the classical Hunt formula for locally compact Lie groups, the ingredients become unique once a certain projection is chosen. There are analogous result for $U_q(N)$.\",\"PeriodicalId\":50369,\"journal\":{\"name\":\"Indiana University Mathematics Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2020-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indiana University Mathematics Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1512/iumj.2023.72.9485\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indiana University Mathematics Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1512/iumj.2023.72.9485","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

我们给出了量子群$SU_q(N)$和$U_q(N)$上Levy过程的无穷小生成元的Hunt型公式。特别地,我们获得了将这种生成器分解为高斯部分和由类似于Levy测度诱导的函数的线性函数确定的“跳跃型”部分。$SU_q(N)$上的跳跃部分进一步分解为存在于量子子群$SU_q(N)$,$N\le N$上的部分。就像经典的局部紧致李群的Hunt公式一样,一旦选择了某个投影,成分就会变得独特。$U_q(N)$也有类似的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hunt's formula for SU_q(N) and U_q(N)
We provide a Hunt type formula for the infinitesimal generators of Levy process on the quantum groups $SU_q(N)$ and $U_q(N)$. In particular, we obtain a decomposition of such generators into a gaussian part and a `jump type' part determined by a linear functional that resembles the functional induced by the Levy measure. The jump part on $SU_q(N)$ decomposes further into parts that live on the quantum subgroups $SU_q(n)$, $n\le N$. Like in the classical Hunt formula for locally compact Lie groups, the ingredients become unique once a certain projection is chosen. There are analogous result for $U_q(N)$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
52
审稿时长
4.5 months
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信