Mac-Lanehomology与拓扑Hochschild同调的乘法比较

IF 0.5 Q3 MATHEMATICS
Geoffroy Horel, Maxime Ramzi
{"title":"Mac-Lanehomology与拓扑Hochschild同调的乘法比较","authors":"Geoffroy Horel, Maxime Ramzi","doi":"10.2140/akt.2021.6.571","DOIUrl":null,"url":null,"abstract":"Let $Q$ denote MacLane's $Q$-construction, and $\\otimes$ denote the smash product of spectra. In this paper we construct an equivalence $Q(R)\\simeq \\mathbb Z\\otimes R$ in the category of $A_\\infty$ ring spectra for any ring $R$, thus proving a conjecture made by Fiedorowicz, Schw\\\"anzl, Vogt and Waldhausen in \"MacLane homology and topological Hochschild homology\". More precisely, we construct is a symmetric monoidal structure on $Q$ (in the $\\infty$-categorical sense) extending the usual monoidal structure, for which we prove an equivalence $Q(-)\\simeq \\mathbb Z\\otimes -$ as symmetric monoidal functors, from which the conjecture follows immediately. From this result, we obtain a new proof of the equivalence $\\mathrm{HML}(R,M)\\simeq \\mathrm{THH}(R,M)$ originally proved by Pirashvili and Waldaushen in \"MacLane homology and topological Hochschild homology\" (a different paper from the one cited above). This equivalence is in fact made symmetric monoidal, and so it also provides a proof of the equivalence $\\mathrm{HML}(R)\\simeq \\mathrm{THH}(R)$ as $E_\\infty$ ring spectra, when $R$ is a commutative ring.","PeriodicalId":42182,"journal":{"name":"Annals of K-Theory","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2020-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A multiplicative comparison of Mac Lane\\nhomology and topological Hochschild homology\",\"authors\":\"Geoffroy Horel, Maxime Ramzi\",\"doi\":\"10.2140/akt.2021.6.571\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $Q$ denote MacLane's $Q$-construction, and $\\\\otimes$ denote the smash product of spectra. In this paper we construct an equivalence $Q(R)\\\\simeq \\\\mathbb Z\\\\otimes R$ in the category of $A_\\\\infty$ ring spectra for any ring $R$, thus proving a conjecture made by Fiedorowicz, Schw\\\\\\\"anzl, Vogt and Waldhausen in \\\"MacLane homology and topological Hochschild homology\\\". More precisely, we construct is a symmetric monoidal structure on $Q$ (in the $\\\\infty$-categorical sense) extending the usual monoidal structure, for which we prove an equivalence $Q(-)\\\\simeq \\\\mathbb Z\\\\otimes -$ as symmetric monoidal functors, from which the conjecture follows immediately. From this result, we obtain a new proof of the equivalence $\\\\mathrm{HML}(R,M)\\\\simeq \\\\mathrm{THH}(R,M)$ originally proved by Pirashvili and Waldaushen in \\\"MacLane homology and topological Hochschild homology\\\" (a different paper from the one cited above). This equivalence is in fact made symmetric monoidal, and so it also provides a proof of the equivalence $\\\\mathrm{HML}(R)\\\\simeq \\\\mathrm{THH}(R)$ as $E_\\\\infty$ ring spectra, when $R$ is a commutative ring.\",\"PeriodicalId\":42182,\"journal\":{\"name\":\"Annals of K-Theory\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of K-Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/akt.2021.6.571\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of K-Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/akt.2021.6.571","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

设$Q$表示MacLane的$Q$-构造,$\otimes$表示光谱的砸积。本文构造了任意环$R$在$A_\infty$环谱范畴中的等价$Q(R)\simeq\mathbb Z\otimes R$,从而证明了Fiedorowicz的一个猜想,Schw\“anzl,Vogt和Waldhausen在“MacLane同调和拓扑Hochschild同调”中。更准确地说,我们构造了$Q$(在$\infty$-范畴意义上)上的对称单胚结构,扩展了通常的单胚结构。对此,我们证明了等价的$Q(-)\simeq\mathbb Z\otimes-$是对称的单oid函子,由此猜想立即成立。从这个结果中,我们得到了Pirashvili和Waldaushen在“MacLane同调和拓扑Hochschild同调”(与上述论文不同)中最初证明的等价$\mathrm{HML}(R,M)\simq\mathrm{THH}(R、M)$的一个新证明。事实上,这个等价是对称的,因此它也证明了当$R$是交换环时,$\mathrm{HML}(R)\simq\mathrm{THH}(R)$等价为$E_\infty$环谱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A multiplicative comparison of Mac Lane homology and topological Hochschild homology
Let $Q$ denote MacLane's $Q$-construction, and $\otimes$ denote the smash product of spectra. In this paper we construct an equivalence $Q(R)\simeq \mathbb Z\otimes R$ in the category of $A_\infty$ ring spectra for any ring $R$, thus proving a conjecture made by Fiedorowicz, Schw\"anzl, Vogt and Waldhausen in "MacLane homology and topological Hochschild homology". More precisely, we construct is a symmetric monoidal structure on $Q$ (in the $\infty$-categorical sense) extending the usual monoidal structure, for which we prove an equivalence $Q(-)\simeq \mathbb Z\otimes -$ as symmetric monoidal functors, from which the conjecture follows immediately. From this result, we obtain a new proof of the equivalence $\mathrm{HML}(R,M)\simeq \mathrm{THH}(R,M)$ originally proved by Pirashvili and Waldaushen in "MacLane homology and topological Hochschild homology" (a different paper from the one cited above). This equivalence is in fact made symmetric monoidal, and so it also provides a proof of the equivalence $\mathrm{HML}(R)\simeq \mathrm{THH}(R)$ as $E_\infty$ ring spectra, when $R$ is a commutative ring.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of K-Theory
Annals of K-Theory MATHEMATICS-
CiteScore
1.10
自引率
0.00%
发文量
12
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信