认识现代的一些形式语义学

IF 0.6 Q2 LOGIC
Christopher Steinsvold
{"title":"认识现代的一些形式语义学","authors":"Christopher Steinsvold","doi":"10.12775/llp.2020.002","DOIUrl":null,"url":null,"abstract":"Given the frequency of human error, it seems rational to believe that some of our own rational beliefs are false. This is the axiom of epistemic modesty. Unfortunately, using standard propositional quantification, and the usual relational semantics, this axiom is semantically inconsistent with a common logic for rational belief, namely KD45. Here we explore two alternative semantics for KD45 and the axiom of epistemic modesty. The first uses the usual relational semantics and bisimulation quantifiers. The second uses a topological semantics and standard propositional quantification. We show the two different semantics validate many of the same formulas, though we do not know whether they validate exactly the same formulas. Along the way we address various philosophical concerns.","PeriodicalId":43501,"journal":{"name":"Logic and Logical Philosophy","volume":"29 1","pages":"381-413"},"PeriodicalIF":0.6000,"publicationDate":"2020-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Some Formal Semantics for Epistemic Modesty\",\"authors\":\"Christopher Steinsvold\",\"doi\":\"10.12775/llp.2020.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given the frequency of human error, it seems rational to believe that some of our own rational beliefs are false. This is the axiom of epistemic modesty. Unfortunately, using standard propositional quantification, and the usual relational semantics, this axiom is semantically inconsistent with a common logic for rational belief, namely KD45. Here we explore two alternative semantics for KD45 and the axiom of epistemic modesty. The first uses the usual relational semantics and bisimulation quantifiers. The second uses a topological semantics and standard propositional quantification. We show the two different semantics validate many of the same formulas, though we do not know whether they validate exactly the same formulas. Along the way we address various philosophical concerns.\",\"PeriodicalId\":43501,\"journal\":{\"name\":\"Logic and Logical Philosophy\",\"volume\":\"29 1\",\"pages\":\"381-413\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Logic and Logical Philosophy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12775/llp.2020.002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Logic and Logical Philosophy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12775/llp.2020.002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 1

摘要

考虑到人为错误的频率,相信我们自己的一些理性信念是错误的似乎是合理的。这就是认识谦逊的公理。不幸的是,使用标准命题量化和通常的关系语义,这个公理在语义上与理性信念的常见逻辑,即KD45不一致。在这里,我们探讨了KD45和认识谦虚公理的两种可选语义。第一个使用通常的关系语义和互模拟量词。第二个使用拓扑语义和标准命题量化。我们展示了两种不同的语义验证了许多相同的公式,尽管我们不知道它们是否验证了完全相同的公式。在此过程中,我们讨论了各种哲学问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some Formal Semantics for Epistemic Modesty
Given the frequency of human error, it seems rational to believe that some of our own rational beliefs are false. This is the axiom of epistemic modesty. Unfortunately, using standard propositional quantification, and the usual relational semantics, this axiom is semantically inconsistent with a common logic for rational belief, namely KD45. Here we explore two alternative semantics for KD45 and the axiom of epistemic modesty. The first uses the usual relational semantics and bisimulation quantifiers. The second uses a topological semantics and standard propositional quantification. We show the two different semantics validate many of the same formulas, though we do not know whether they validate exactly the same formulas. Along the way we address various philosophical concerns.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
40.00%
发文量
29
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信