Morgan Robinson, Carina T Filice, D. McRae, Z. Leonenko
{"title":"原子力显微镜和其他扫描探针显微镜方法研究模型脂质膜的纳米级结构域","authors":"Morgan Robinson, Carina T Filice, D. McRae, Z. Leonenko","doi":"10.1080/23746149.2023.2197623","DOIUrl":null,"url":null,"abstract":"ABSTRACT The cell membrane is a fundamental biological structure, which is only 6–10 nm thick. It is composed of hundreds of lipid types, which form small and dynamic lipid domains or rafts. These rafts are thought to be a major aspect of cell organization, to provide support for various transmembrane proteins and are central to the communication of cells with their environs. Understanding the functions of lipid rafts presents an exciting opportunity to understand the molecular mechanisms of biologically important processes, as well as to uncover fundamental molecular mechanisms of membrane-associated diseases. Due to the high complexity of cell membranes, model membranes composed of synthetic lipids have been developed and are widely used to mimic biomembranes in an effort to study the structure and dynamics of lipid domains and their role in cell function. Atomic force microscopy (AFM), Kelvin probe force microscopy (KPFM) and atomic force spectroscopy (AFS) significantly advanced the study of nanodomains in model lipid membranes and monolayers. We review applications of these methods to the study of model membranes, which are widely used to mimic eukaryotic and bacterial cells, as well as neuronal cellular membranes in Alzheimer’s disease (AD). Graphical Abstract","PeriodicalId":7374,"journal":{"name":"Advances in Physics: X","volume":" ","pages":""},"PeriodicalIF":7.7000,"publicationDate":"2023-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Atomic force microscopy and other scanning probe microscopy methods to study nanoscale domains in model lipid membranes\",\"authors\":\"Morgan Robinson, Carina T Filice, D. McRae, Z. Leonenko\",\"doi\":\"10.1080/23746149.2023.2197623\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT The cell membrane is a fundamental biological structure, which is only 6–10 nm thick. It is composed of hundreds of lipid types, which form small and dynamic lipid domains or rafts. These rafts are thought to be a major aspect of cell organization, to provide support for various transmembrane proteins and are central to the communication of cells with their environs. Understanding the functions of lipid rafts presents an exciting opportunity to understand the molecular mechanisms of biologically important processes, as well as to uncover fundamental molecular mechanisms of membrane-associated diseases. Due to the high complexity of cell membranes, model membranes composed of synthetic lipids have been developed and are widely used to mimic biomembranes in an effort to study the structure and dynamics of lipid domains and their role in cell function. Atomic force microscopy (AFM), Kelvin probe force microscopy (KPFM) and atomic force spectroscopy (AFS) significantly advanced the study of nanodomains in model lipid membranes and monolayers. We review applications of these methods to the study of model membranes, which are widely used to mimic eukaryotic and bacterial cells, as well as neuronal cellular membranes in Alzheimer’s disease (AD). Graphical Abstract\",\"PeriodicalId\":7374,\"journal\":{\"name\":\"Advances in Physics: X\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2023-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Physics: X\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1080/23746149.2023.2197623\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Physics: X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1080/23746149.2023.2197623","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Atomic force microscopy and other scanning probe microscopy methods to study nanoscale domains in model lipid membranes
ABSTRACT The cell membrane is a fundamental biological structure, which is only 6–10 nm thick. It is composed of hundreds of lipid types, which form small and dynamic lipid domains or rafts. These rafts are thought to be a major aspect of cell organization, to provide support for various transmembrane proteins and are central to the communication of cells with their environs. Understanding the functions of lipid rafts presents an exciting opportunity to understand the molecular mechanisms of biologically important processes, as well as to uncover fundamental molecular mechanisms of membrane-associated diseases. Due to the high complexity of cell membranes, model membranes composed of synthetic lipids have been developed and are widely used to mimic biomembranes in an effort to study the structure and dynamics of lipid domains and their role in cell function. Atomic force microscopy (AFM), Kelvin probe force microscopy (KPFM) and atomic force spectroscopy (AFS) significantly advanced the study of nanodomains in model lipid membranes and monolayers. We review applications of these methods to the study of model membranes, which are widely used to mimic eukaryotic and bacterial cells, as well as neuronal cellular membranes in Alzheimer’s disease (AD). Graphical Abstract
期刊介绍:
Advances in Physics: X is a fully open-access journal that promotes the centrality of physics and physical measurement to modern science and technology. Advances in Physics: X aims to demonstrate the interconnectivity of physics, meaning the intellectual relationships that exist between one branch of physics and another, as well as the influence of physics across (hence the “X”) traditional boundaries into other disciplines including:
Chemistry
Materials Science
Engineering
Biology
Medicine