{"title":"$L_x^2(\\mathbb R^2)中具有Yukawa型势的Dirac方程的小数据散射$","authors":"Yonggeun Cho, Kiyoen Lee","doi":"10.57262/die034-0708-425","DOIUrl":null,"url":null,"abstract":"We revisit the Cauchy problem of nonlinear massive Dirac equation with Yukawa type potentials F [ (b + |ξ|) ] in 2 dimensions. The authors of [10, 4] obtained small data scattering and large data global well-posedness in H for s > 0, respectively. In this paper we show that the small data scattering occurs in L x (R). This can be done by combining bilinear estimates and modulation estimates of [12, 10].","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Small data scattering of Dirac equations with Yukawa type\\n potentials in $L_x^2(\\\\mathbb R^2)$\",\"authors\":\"Yonggeun Cho, Kiyoen Lee\",\"doi\":\"10.57262/die034-0708-425\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We revisit the Cauchy problem of nonlinear massive Dirac equation with Yukawa type potentials F [ (b + |ξ|) ] in 2 dimensions. The authors of [10, 4] obtained small data scattering and large data global well-posedness in H for s > 0, respectively. In this paper we show that the small data scattering occurs in L x (R). This can be done by combining bilinear estimates and modulation estimates of [12, 10].\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.57262/die034-0708-425\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.57262/die034-0708-425","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Small data scattering of Dirac equations with Yukawa type
potentials in $L_x^2(\mathbb R^2)$
We revisit the Cauchy problem of nonlinear massive Dirac equation with Yukawa type potentials F [ (b + |ξ|) ] in 2 dimensions. The authors of [10, 4] obtained small data scattering and large data global well-posedness in H for s > 0, respectively. In this paper we show that the small data scattering occurs in L x (R). This can be done by combining bilinear estimates and modulation estimates of [12, 10].
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.