交叉积纠缠态

IF 1 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
A. Dehghani, A. Akhound, F. Panahyazdan
{"title":"交叉积纠缠态","authors":"A. Dehghani,&nbsp;A. Akhound,&nbsp;F. Panahyazdan","doi":"10.1016/S0034-4877(22)00069-6","DOIUrl":null,"url":null,"abstract":"<div><p>This paper demonstrates a new formalism of producing some entangled states<span><span> attached to a two-particle system. We explain how these entangled states come directly from a new algebraic method through the cross-product of two spin coherent states. They lead to various quantum states with considerable nonclassical properties, and are capable candidates to minimize the entropic uncertainty relation, too. We will also examine and optimize the quantum properties of these states, for example by selecting the appropriate parameters one can </span>control quantum (classical) correlations.</span></p></div>","PeriodicalId":49630,"journal":{"name":"Reports on Mathematical Physics","volume":"90 2","pages":"Pages 257-270"},"PeriodicalIF":1.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Crossed-product entangled states\",\"authors\":\"A. Dehghani,&nbsp;A. Akhound,&nbsp;F. Panahyazdan\",\"doi\":\"10.1016/S0034-4877(22)00069-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper demonstrates a new formalism of producing some entangled states<span><span> attached to a two-particle system. We explain how these entangled states come directly from a new algebraic method through the cross-product of two spin coherent states. They lead to various quantum states with considerable nonclassical properties, and are capable candidates to minimize the entropic uncertainty relation, too. We will also examine and optimize the quantum properties of these states, for example by selecting the appropriate parameters one can </span>control quantum (classical) correlations.</span></p></div>\",\"PeriodicalId\":49630,\"journal\":{\"name\":\"Reports on Mathematical Physics\",\"volume\":\"90 2\",\"pages\":\"Pages 257-270\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reports on Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0034487722000696\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reports on Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0034487722000696","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了一种产生双粒子系统纠缠态的新形式。我们解释了这些纠缠态是如何通过两个自旋相干态的交叉积直接从一种新的代数方法得到的。它们导致具有相当非经典性质的各种量子态,并且也是最小化熵不确定性关系的候选对象。我们还将检查和优化这些状态的量子特性,例如,通过选择适当的参数可以控制量子(经典)相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Crossed-product entangled states

This paper demonstrates a new formalism of producing some entangled states attached to a two-particle system. We explain how these entangled states come directly from a new algebraic method through the cross-product of two spin coherent states. They lead to various quantum states with considerable nonclassical properties, and are capable candidates to minimize the entropic uncertainty relation, too. We will also examine and optimize the quantum properties of these states, for example by selecting the appropriate parameters one can control quantum (classical) correlations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Reports on Mathematical Physics
Reports on Mathematical Physics 物理-物理:数学物理
CiteScore
1.80
自引率
0.00%
发文量
40
审稿时长
6 months
期刊介绍: Reports on Mathematical Physics publish papers in theoretical physics which present a rigorous mathematical approach to problems of quantum and classical mechanics and field theories, relativity and gravitation, statistical physics, thermodynamics, mathematical foundations of physical theories, etc. Preferred are papers using modern methods of functional analysis, probability theory, differential geometry, algebra and mathematical logic. Papers without direct connection with physics will not be accepted. Manuscripts should be concise, but possibly complete in presentation and discussion, to be comprehensible not only for mathematicians, but also for mathematically oriented theoretical physicists. All papers should describe original work and be written in English.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信