具有斜率选择的MBE方程的能量稳定滤波后向Euler格式

IF 1.9 4区 数学 Q1 MATHEMATICS
Jiexin Wang, Hong-Lin Liao null, Ying Zhao
{"title":"具有斜率选择的MBE方程的能量稳定滤波后向Euler格式","authors":"Jiexin Wang, Hong-Lin Liao null, Ying Zhao","doi":"10.4208/nmtma.oa-2022-0072","DOIUrl":null,"url":null,"abstract":". As a promising strategy to adjust the order in the variable-order BDF algo-rithm, a time filtered backward Euler scheme is investigated for the molecular beam epitaxial equation with slope selection. The temporal second-order convergence in the L 2 norm is established under a convergence-solvability-stability (CSS)-consistent time-step constraint. The CSS-consistent condition means that the maximum step-size limit required for convergence is of the same order to that for solvability and stability (in certain norms) as the small interface parameter ε → 0 + . Similar to the backward Euler scheme, the time filtered backward Euler scheme preserves some physical properties of the original problem at the discrete levels, including the volume conservation, the energy dissipation law and L 2 norm boundedness. Numerical tests are included to support the theoretical results.","PeriodicalId":51146,"journal":{"name":"Numerical Mathematics-Theory Methods and Applications","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Energy Stable Filtered Backward Euler Scheme for the MBE Equation with Slope Selection\",\"authors\":\"Jiexin Wang, Hong-Lin Liao null, Ying Zhao\",\"doi\":\"10.4208/nmtma.oa-2022-0072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". As a promising strategy to adjust the order in the variable-order BDF algo-rithm, a time filtered backward Euler scheme is investigated for the molecular beam epitaxial equation with slope selection. The temporal second-order convergence in the L 2 norm is established under a convergence-solvability-stability (CSS)-consistent time-step constraint. The CSS-consistent condition means that the maximum step-size limit required for convergence is of the same order to that for solvability and stability (in certain norms) as the small interface parameter ε → 0 + . Similar to the backward Euler scheme, the time filtered backward Euler scheme preserves some physical properties of the original problem at the discrete levels, including the volume conservation, the energy dissipation law and L 2 norm boundedness. Numerical tests are included to support the theoretical results.\",\"PeriodicalId\":51146,\"journal\":{\"name\":\"Numerical Mathematics-Theory Methods and Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerical Mathematics-Theory Methods and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4208/nmtma.oa-2022-0072\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Mathematics-Theory Methods and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4208/nmtma.oa-2022-0072","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

.作为一种很有前途的调整变阶BDF算法阶数的策略,研究了具有斜率选择的分子束外延方程的时间滤波后向欧拉格式。在收敛可解稳定性(CSS)一致时间步长约束下,建立了L2范数的时间二阶收敛性。CSS一致条件意味着收敛所需的最大步长极限与小界面参数ε的可解性和稳定性(在某些范数下)的阶数相同→ 0+。与后向欧拉格式类似,时间过滤后向欧拉方案在离散水平上保留了原始问题的一些物理性质,包括体积守恒、能量耗散定律和L2范数有界性。数值试验支持了理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Energy Stable Filtered Backward Euler Scheme for the MBE Equation with Slope Selection
. As a promising strategy to adjust the order in the variable-order BDF algo-rithm, a time filtered backward Euler scheme is investigated for the molecular beam epitaxial equation with slope selection. The temporal second-order convergence in the L 2 norm is established under a convergence-solvability-stability (CSS)-consistent time-step constraint. The CSS-consistent condition means that the maximum step-size limit required for convergence is of the same order to that for solvability and stability (in certain norms) as the small interface parameter ε → 0 + . Similar to the backward Euler scheme, the time filtered backward Euler scheme preserves some physical properties of the original problem at the discrete levels, including the volume conservation, the energy dissipation law and L 2 norm boundedness. Numerical tests are included to support the theoretical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
7.70%
发文量
33
审稿时长
>12 weeks
期刊介绍: Numerical Mathematics: Theory, Methods and Applications (NM-TMA) publishes high-quality original research papers on the construction, analysis and application of numerical methods for solving scientific and engineering problems. Important research and expository papers devoted to the numerical solution of mathematical equations arising in all areas of science and technology are expected. The journal originates from the journal Numerical Mathematics: A Journal of Chinese Universities (English Edition). NM-TMA is a refereed international journal sponsored by Nanjing University and the Ministry of Education of China. As an international journal, NM-TMA is published in a timely fashion in printed and electronic forms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信