电力链路偏度参数的惩罚复杂度先验

Pub Date : 2023-03-27 DOI:10.1002/cjs.11769
José A. Ordoñez, Marcos O. Prates, Jorge L. Bazán, Victor H. Lachos
{"title":"电力链路偏度参数的惩罚复杂度先验","authors":"José A. Ordoñez,&nbsp;Marcos O. Prates,&nbsp;Jorge L. Bazán,&nbsp;Victor H. Lachos","doi":"10.1002/cjs.11769","DOIUrl":null,"url":null,"abstract":"<p>The choice of a prior distribution is a key aspect of the Bayesian method. However, in many cases, such as the family of power links, this is not trivial. In this article, we introduce a penalized complexity prior (PC prior) of the skewness parameter for this family, which is useful for dealing with imbalanced data. We derive a general expression for this density and show its usefulness for some particular cases such as the power logit and the power probit links. A simulation study and a real data application are used to assess the efficiency of the introduced densities in comparison with the Gaussian and uniform priors. Results show improvement in point and credible interval estimation for the considered models when using the PC prior in comparison to other well-known standard priors.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Penalized complexity priors for the skewness parameter of power links\",\"authors\":\"José A. Ordoñez,&nbsp;Marcos O. Prates,&nbsp;Jorge L. Bazán,&nbsp;Victor H. Lachos\",\"doi\":\"10.1002/cjs.11769\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The choice of a prior distribution is a key aspect of the Bayesian method. However, in many cases, such as the family of power links, this is not trivial. In this article, we introduce a penalized complexity prior (PC prior) of the skewness parameter for this family, which is useful for dealing with imbalanced data. We derive a general expression for this density and show its usefulness for some particular cases such as the power logit and the power probit links. A simulation study and a real data application are used to assess the efficiency of the introduced densities in comparison with the Gaussian and uniform priors. Results show improvement in point and credible interval estimation for the considered models when using the PC prior in comparison to other well-known standard priors.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cjs.11769\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cjs.11769","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

先验分布的选择是贝叶斯方法的一个关键方面。然而,在很多情况下,例如幂级数联立方程族,这并非易事。在本文中,我们为该系列引入了偏度参数的受惩罚复杂度先验(PC 先验),这对于处理不平衡数据非常有用。我们推导出了该密度的一般表达式,并展示了它在一些特殊情况下的实用性,如 power logit 和 power probit 链接。我们使用模拟研究和真实数据应用来评估引入的密度与高斯先验和均匀先验相比的效率。结果表明,与其他著名的标准先验相比,使用 PC 先验时,所考虑模型的点估计和可信区间估计都有所改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Penalized complexity priors for the skewness parameter of power links

The choice of a prior distribution is a key aspect of the Bayesian method. However, in many cases, such as the family of power links, this is not trivial. In this article, we introduce a penalized complexity prior (PC prior) of the skewness parameter for this family, which is useful for dealing with imbalanced data. We derive a general expression for this density and show its usefulness for some particular cases such as the power logit and the power probit links. A simulation study and a real data application are used to assess the efficiency of the introduced densities in comparison with the Gaussian and uniform priors. Results show improvement in point and credible interval estimation for the considered models when using the PC prior in comparison to other well-known standard priors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信