大气气体下稳定于ι-卡拉胶中的胶体银纳米粒子的γ射线合成:基于表面等离子体共振的研究

IF 0.6 Q4 NUCLEAR SCIENCE & TECHNOLOGY
D. Perkasa, M. Yunus, Y. Warastuti, B. Abbas
{"title":"大气气体下稳定于ι-卡拉胶中的胶体银纳米粒子的γ射线合成:基于表面等离子体共振的研究","authors":"D. Perkasa, M. Yunus, Y. Warastuti, B. Abbas","doi":"10.17146/aij.2021.963","DOIUrl":null,"url":null,"abstract":"ι-Carrageenan is a biodegradable and biocompatible biomaterial which potentially stabilizes colloidal silver nanoparticles (AgNPs). The present study explored gamma radiosynthesis of AgNPs at varied concentration of ι-carrageenan solutions. The reaction system contained 1.0 mM silver precursor from silver nitrate salt. Gamma irradiation was conducted at doses up to 20 kGy under simple condition, i.e., atmospheric gases and without addition of hydroxyl radical scavenger. The behavior of AgNPs in suspension was characterized based on their surface plasmon resonance (SPR) absorption spectra which were measured using UV-vis spectrophotometer. The results show that colloidal AgNPs were successfully radiosynthesized due to dual stabilizing/reducing activity of ι-carrageenan. The degradation product of ι-carrageenan shows antioxidant activities, which increase the reducing condition of the  reaction system. TEM micrograph reveals that the nanoparticles are spheroid in shape and monodisperse with an average particle size of below 10 nm. The SPR spectra indicate that the highest AgNPs concentration is found for irradiation at a dose of 10 kGy and ι-carrageenan concentration of 1.0 % (w/v). However, instability of AgNPs occurred a day after radiosynthesis due to oxidative dissolution and agglomeration. Further works on pH adjustment and optimization on irradiation dose and ι-carrageenan concentration are critical to improve the stability of colloidal AgNPs. Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ \n table.MsoNormalTable \n {mso-style-name:\"Table Normal\"; \n mso-tstyle-rowband-size:0; \n mso-tstyle-colband-size:0; \n mso-style-noshow:yes; \n mso-style-priority:99; \n mso-style-parent:\"\"; \n mso-padding-alt:0cm 5.4pt 0cm 5.4pt; \n mso-para-margin:0cm; \n mso-para-margin-bottom:.0001pt; \n mso-pagination:widow-orphan; \n font-size:10.0pt; \n font-family:\"Times New Roman\",\"serif\";}","PeriodicalId":8647,"journal":{"name":"Atom Indonesia","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Gamma Radiosynthesis of Colloidal Silver Nanoparticles Stabilized in ι-Carrageenan Under Atmospheric Gases: A Surface Plasmon Resonance Based Study\",\"authors\":\"D. Perkasa, M. Yunus, Y. Warastuti, B. Abbas\",\"doi\":\"10.17146/aij.2021.963\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ι-Carrageenan is a biodegradable and biocompatible biomaterial which potentially stabilizes colloidal silver nanoparticles (AgNPs). The present study explored gamma radiosynthesis of AgNPs at varied concentration of ι-carrageenan solutions. The reaction system contained 1.0 mM silver precursor from silver nitrate salt. Gamma irradiation was conducted at doses up to 20 kGy under simple condition, i.e., atmospheric gases and without addition of hydroxyl radical scavenger. The behavior of AgNPs in suspension was characterized based on their surface plasmon resonance (SPR) absorption spectra which were measured using UV-vis spectrophotometer. The results show that colloidal AgNPs were successfully radiosynthesized due to dual stabilizing/reducing activity of ι-carrageenan. The degradation product of ι-carrageenan shows antioxidant activities, which increase the reducing condition of the  reaction system. TEM micrograph reveals that the nanoparticles are spheroid in shape and monodisperse with an average particle size of below 10 nm. The SPR spectra indicate that the highest AgNPs concentration is found for irradiation at a dose of 10 kGy and ι-carrageenan concentration of 1.0 % (w/v). However, instability of AgNPs occurred a day after radiosynthesis due to oxidative dissolution and agglomeration. Further works on pH adjustment and optimization on irradiation dose and ι-carrageenan concentration are critical to improve the stability of colloidal AgNPs. Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ \\n table.MsoNormalTable \\n {mso-style-name:\\\"Table Normal\\\"; \\n mso-tstyle-rowband-size:0; \\n mso-tstyle-colband-size:0; \\n mso-style-noshow:yes; \\n mso-style-priority:99; \\n mso-style-parent:\\\"\\\"; \\n mso-padding-alt:0cm 5.4pt 0cm 5.4pt; \\n mso-para-margin:0cm; \\n mso-para-margin-bottom:.0001pt; \\n mso-pagination:widow-orphan; \\n font-size:10.0pt; \\n font-family:\\\"Times New Roman\\\",\\\"serif\\\";}\",\"PeriodicalId\":8647,\"journal\":{\"name\":\"Atom Indonesia\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atom Indonesia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17146/aij.2021.963\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atom Indonesia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17146/aij.2021.963","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

ι-卡拉胶是一种可生物降解和生物相容性的生物材料,具有稳定胶体银纳米粒子(AgNPs)的潜力。本研究探索了γ射线在不同浓度的ι-卡拉胶溶液中合成AgNPs的方法。反应体系中含有1.0 mM的硝酸银前驱体。在简单条件下,即在大气气体中,不添加羟基自由基清除剂,以高达20 kGy的剂量进行伽马辐照。利用紫外-可见分光光度计测量AgNPs的表面等离子体共振(SPR)吸收光谱,对其在悬浮液中的行为进行了表征。结果表明,由于ι-卡拉胶具有稳定/还原双重活性,可以成功地放射性合成胶体AgNPs。降解产物ι-卡拉胶具有抗氧化活性,提高了反应体系的还原条件。TEM显微图显示,纳米颗粒呈球形,单分散,平均粒径小于10 nm。SPR光谱表明,当辐照剂量为10 kGy, α -卡拉胶浓度为1.0% (w/v)时,AgNPs浓度最高。然而,由于氧化溶解和团聚,AgNPs在放射性合成后一天发生不稳定性。进一步调整pH、优化辐照剂量和α -卡拉胶浓度是提高胶体AgNPs稳定性的关键。正常0 false false false EN-US X-NONE X-NONE /*样式定义*/表。mso-style-name:"Table Normal";mso-tstyle-rowband-size: 0;mso-tstyle-colband-size: 0;mso-style-noshow:是的;mso-style-priority: 99;mso-style-parent:“”;Mso-padding-alt:0cm 5.4pt;mso-para-margin: 0厘米;mso-para-margin-bottom: .0001pt;mso-pagination: widow-orphan;字体大小:10.0分;font-family:"Times New Roman","serif";}
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gamma Radiosynthesis of Colloidal Silver Nanoparticles Stabilized in ι-Carrageenan Under Atmospheric Gases: A Surface Plasmon Resonance Based Study
ι-Carrageenan is a biodegradable and biocompatible biomaterial which potentially stabilizes colloidal silver nanoparticles (AgNPs). The present study explored gamma radiosynthesis of AgNPs at varied concentration of ι-carrageenan solutions. The reaction system contained 1.0 mM silver precursor from silver nitrate salt. Gamma irradiation was conducted at doses up to 20 kGy under simple condition, i.e., atmospheric gases and without addition of hydroxyl radical scavenger. The behavior of AgNPs in suspension was characterized based on their surface plasmon resonance (SPR) absorption spectra which were measured using UV-vis spectrophotometer. The results show that colloidal AgNPs were successfully radiosynthesized due to dual stabilizing/reducing activity of ι-carrageenan. The degradation product of ι-carrageenan shows antioxidant activities, which increase the reducing condition of the  reaction system. TEM micrograph reveals that the nanoparticles are spheroid in shape and monodisperse with an average particle size of below 10 nm. The SPR spectra indicate that the highest AgNPs concentration is found for irradiation at a dose of 10 kGy and ι-carrageenan concentration of 1.0 % (w/v). However, instability of AgNPs occurred a day after radiosynthesis due to oxidative dissolution and agglomeration. Further works on pH adjustment and optimization on irradiation dose and ι-carrageenan concentration are critical to improve the stability of colloidal AgNPs. Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman","serif";}
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Atom Indonesia
Atom Indonesia NUCLEAR SCIENCE & TECHNOLOGY-
CiteScore
1.00
自引率
0.00%
发文量
20
审稿时长
16 weeks
期刊介绍: The focus of Atom Indonesia is research and development in nuclear science and technology. The scope of this journal covers experimental and analytical research in nuclear science and technology. The topics include nuclear physics, reactor physics, radioactive waste, fuel element, radioisotopes, radiopharmacy, radiation, and neutron scattering, as well as their utilization in agriculture, industry, health, environment, energy, material science and technology, and related fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信