小波变换下三阶张量补全的非凸优化

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Quan Yu, Minru Bai
{"title":"小波变换下三阶张量补全的非凸优化","authors":"Quan Yu, Minru Bai","doi":"10.1002/nla.2489","DOIUrl":null,"url":null,"abstract":"The main aim of this paper is to develop a nonconvex optimization model for third‐order tensor completion under wavelet transform. On the one hand, through wavelet transform of frontal slices, we divide a large tensor data into a main part tensor and three detail part tensors, and the elements of these four tensors are about a quarter of the original tensors. Solving these four small tensors can not only improve the operation efficiency, but also better restore the original tensor data. On the other hand, by using concave correction term, we are able to correct for low rank of tubal nuclear norm (TNN) data fidelity term and sparsity of l1$$ {l}_1 $$ ‐norm data fidelity term. We prove that the proposed algorithm can converge to some critical point. Experimental results on image, magnetic resonance imaging and video inpainting tasks clearly demonstrate the superior performance and efficiency of our developed method over state‐of‐the‐arts including the TNN and other methods.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonconvex optimization for third‐order tensor completion under wavelet transform\",\"authors\":\"Quan Yu, Minru Bai\",\"doi\":\"10.1002/nla.2489\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main aim of this paper is to develop a nonconvex optimization model for third‐order tensor completion under wavelet transform. On the one hand, through wavelet transform of frontal slices, we divide a large tensor data into a main part tensor and three detail part tensors, and the elements of these four tensors are about a quarter of the original tensors. Solving these four small tensors can not only improve the operation efficiency, but also better restore the original tensor data. On the other hand, by using concave correction term, we are able to correct for low rank of tubal nuclear norm (TNN) data fidelity term and sparsity of l1$$ {l}_1 $$ ‐norm data fidelity term. We prove that the proposed algorithm can converge to some critical point. Experimental results on image, magnetic resonance imaging and video inpainting tasks clearly demonstrate the superior performance and efficiency of our developed method over state‐of‐the‐arts including the TNN and other methods.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/nla.2489\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/nla.2489","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文的主要目的是建立一个小波变换下三阶张量补全的非凸优化模型。一方面,通过额片的小波变换,将一个大张量数据划分为一个主张量和三个细节张量,这四个张量的元素约为原始张量的四分之一;求解这四个小张量不仅可以提高运算效率,而且可以更好地恢复原始张量数据。另一方面,通过使用凹形校正项,我们能够校正低秩的管核范数(TNN)数据保真度项和l1 $$ {l}_1 $$‐范数数据保真度项的稀疏性。我们证明了该算法能够收敛到某个临界点。图像、磁共振成像和视频喷漆任务的实验结果清楚地表明,我们开发的方法比包括TNN和其他方法在内的最先进方法具有优越的性能和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonconvex optimization for third‐order tensor completion under wavelet transform
The main aim of this paper is to develop a nonconvex optimization model for third‐order tensor completion under wavelet transform. On the one hand, through wavelet transform of frontal slices, we divide a large tensor data into a main part tensor and three detail part tensors, and the elements of these four tensors are about a quarter of the original tensors. Solving these four small tensors can not only improve the operation efficiency, but also better restore the original tensor data. On the other hand, by using concave correction term, we are able to correct for low rank of tubal nuclear norm (TNN) data fidelity term and sparsity of l1$$ {l}_1 $$ ‐norm data fidelity term. We prove that the proposed algorithm can converge to some critical point. Experimental results on image, magnetic resonance imaging and video inpainting tasks clearly demonstrate the superior performance and efficiency of our developed method over state‐of‐the‐arts including the TNN and other methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信