{"title":"k3表面的三重覆盖","authors":"Alice Garbagnati, M. Penegini","doi":"10.1017/nmj.2022.15","DOIUrl":null,"url":null,"abstract":"Abstract We study triple covers of K3 surfaces, following Miranda (1985, American Journal of Mathematics 107, 1123–1158). We relate the geometry of the covering surfaces with the properties of both the branch locus and the Tschirnhausen vector bundle. In particular, we classify Galois triple covers computing numerical invariants of the covering surface and of its minimal model. We provide examples of non-Galois triple covers, both in the case in which the Tschirnhausen bundle splits into the sum of two line bundles and in the case in which it is an indecomposable rank 2 vector bundle. We provide a criterion to construct rank 2 vector bundles on a K3 surface S which determine a non-Galois triple cover of S. The examples presented are in any admissible Kodaira dimension, and in particular, we provide the constructions of irregular covers of K3 surfaces and of surfaces with geometrical genus equal to 2 whose transcendental Hodge structure splits in the sum of two Hodge structures of K3 type.","PeriodicalId":49785,"journal":{"name":"Nagoya Mathematical Journal","volume":"248 1","pages":"939 - 979"},"PeriodicalIF":0.8000,"publicationDate":"2021-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"TRIPLE COVERS OF K3 SURFACES\",\"authors\":\"Alice Garbagnati, M. Penegini\",\"doi\":\"10.1017/nmj.2022.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We study triple covers of K3 surfaces, following Miranda (1985, American Journal of Mathematics 107, 1123–1158). We relate the geometry of the covering surfaces with the properties of both the branch locus and the Tschirnhausen vector bundle. In particular, we classify Galois triple covers computing numerical invariants of the covering surface and of its minimal model. We provide examples of non-Galois triple covers, both in the case in which the Tschirnhausen bundle splits into the sum of two line bundles and in the case in which it is an indecomposable rank 2 vector bundle. We provide a criterion to construct rank 2 vector bundles on a K3 surface S which determine a non-Galois triple cover of S. The examples presented are in any admissible Kodaira dimension, and in particular, we provide the constructions of irregular covers of K3 surfaces and of surfaces with geometrical genus equal to 2 whose transcendental Hodge structure splits in the sum of two Hodge structures of K3 type.\",\"PeriodicalId\":49785,\"journal\":{\"name\":\"Nagoya Mathematical Journal\",\"volume\":\"248 1\",\"pages\":\"939 - 979\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nagoya Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/nmj.2022.15\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nagoya Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/nmj.2022.15","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Abstract We study triple covers of K3 surfaces, following Miranda (1985, American Journal of Mathematics 107, 1123–1158). We relate the geometry of the covering surfaces with the properties of both the branch locus and the Tschirnhausen vector bundle. In particular, we classify Galois triple covers computing numerical invariants of the covering surface and of its minimal model. We provide examples of non-Galois triple covers, both in the case in which the Tschirnhausen bundle splits into the sum of two line bundles and in the case in which it is an indecomposable rank 2 vector bundle. We provide a criterion to construct rank 2 vector bundles on a K3 surface S which determine a non-Galois triple cover of S. The examples presented are in any admissible Kodaira dimension, and in particular, we provide the constructions of irregular covers of K3 surfaces and of surfaces with geometrical genus equal to 2 whose transcendental Hodge structure splits in the sum of two Hodge structures of K3 type.
期刊介绍:
The Nagoya Mathematical Journal is published quarterly. Since its formation in 1950 by a group led by Tadashi Nakayama, the journal has endeavoured to publish original research papers of the highest quality and of general interest, covering a broad range of pure mathematics. The journal is owned by Foundation Nagoya Mathematical Journal, which uses the proceeds from the journal to support mathematics worldwide.