k3表面的三重覆盖

Pub Date : 2021-09-16 DOI:10.1017/nmj.2022.15
Alice Garbagnati, M. Penegini
{"title":"k3表面的三重覆盖","authors":"Alice Garbagnati, M. Penegini","doi":"10.1017/nmj.2022.15","DOIUrl":null,"url":null,"abstract":"Abstract We study triple covers of K3 surfaces, following Miranda (1985, American Journal of Mathematics 107, 1123–1158). We relate the geometry of the covering surfaces with the properties of both the branch locus and the Tschirnhausen vector bundle. In particular, we classify Galois triple covers computing numerical invariants of the covering surface and of its minimal model. We provide examples of non-Galois triple covers, both in the case in which the Tschirnhausen bundle splits into the sum of two line bundles and in the case in which it is an indecomposable rank 2 vector bundle. We provide a criterion to construct rank 2 vector bundles on a K3 surface S which determine a non-Galois triple cover of S. The examples presented are in any admissible Kodaira dimension, and in particular, we provide the constructions of irregular covers of K3 surfaces and of surfaces with geometrical genus equal to 2 whose transcendental Hodge structure splits in the sum of two Hodge structures of K3 type.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"TRIPLE COVERS OF K3 SURFACES\",\"authors\":\"Alice Garbagnati, M. Penegini\",\"doi\":\"10.1017/nmj.2022.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We study triple covers of K3 surfaces, following Miranda (1985, American Journal of Mathematics 107, 1123–1158). We relate the geometry of the covering surfaces with the properties of both the branch locus and the Tschirnhausen vector bundle. In particular, we classify Galois triple covers computing numerical invariants of the covering surface and of its minimal model. We provide examples of non-Galois triple covers, both in the case in which the Tschirnhausen bundle splits into the sum of two line bundles and in the case in which it is an indecomposable rank 2 vector bundle. We provide a criterion to construct rank 2 vector bundles on a K3 surface S which determine a non-Galois triple cover of S. The examples presented are in any admissible Kodaira dimension, and in particular, we provide the constructions of irregular covers of K3 surfaces and of surfaces with geometrical genus equal to 2 whose transcendental Hodge structure splits in the sum of two Hodge structures of K3 type.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/nmj.2022.15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/nmj.2022.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

摘要我们研究了K3曲面的三重覆盖,遵循Miranda(1985,《美国数学杂志》1071123-1158)。我们将覆盖曲面的几何与分支轨迹和Tschirnhausen向量丛的性质联系起来。特别地,我们通过计算覆盖曲面及其最小模型的数值不变量,对Galois三覆盖进行了分类。我们提供了非伽罗瓦三覆盖的例子,无论是在Tschirnhausen丛分裂成两个行丛之和的情况下,还是在它是不可分解的秩2向量丛的情况下。我们提供了一个在K3曲面S上构造秩为2的向量丛的准则,它确定了S的非Galois三覆盖。给出的例子是在任何可容许的Kodaira维数中,特别是,我们给出了K3曲面和几何亏格等于2的曲面的不规则覆盖的构造,其超越Hodge结构分裂为两个K3型Hodge结构的和。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
TRIPLE COVERS OF K3 SURFACES
Abstract We study triple covers of K3 surfaces, following Miranda (1985, American Journal of Mathematics 107, 1123–1158). We relate the geometry of the covering surfaces with the properties of both the branch locus and the Tschirnhausen vector bundle. In particular, we classify Galois triple covers computing numerical invariants of the covering surface and of its minimal model. We provide examples of non-Galois triple covers, both in the case in which the Tschirnhausen bundle splits into the sum of two line bundles and in the case in which it is an indecomposable rank 2 vector bundle. We provide a criterion to construct rank 2 vector bundles on a K3 surface S which determine a non-Galois triple cover of S. The examples presented are in any admissible Kodaira dimension, and in particular, we provide the constructions of irregular covers of K3 surfaces and of surfaces with geometrical genus equal to 2 whose transcendental Hodge structure splits in the sum of two Hodge structures of K3 type.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信