{"title":"DL-柠檬烯微乳体系修复不饱和区有机氯化合物","authors":"V. Campos, D. G. Marques, D. D. Anjos","doi":"10.15255/cabeq.2021.2024","DOIUrl":null,"url":null,"abstract":"Contamination of the unsaturated zone, and hence, of groundwater by non-aqueous phase liquids has become a problem that arouses great concern due to the environmental damage it causes. Several efficient and economically beneficial techniques for the in situ treatment of contaminated soils have been applied quite frequently, including the so-called soil flushing processes. In this study, microemulsion systems were prepared using limonene, in the search for a formulation that would remove trichloroethene in soil. Limonene, a monocyclic monoterpene, is one of the main constituents of various essential oils of citrus fruits, such as oranges, tangerines and lemons. The results indicated that using a washing fluid containing 15 % DL-limonene microemulsion enabled the removal of 98.85 % of trichloroethene present in the soil after 30 minutes of residence time in the system. Hence, it can be concluded that the use of this microemulsion system is an inter-esting strategy for the remediation of soils contaminated with trichloroethene.","PeriodicalId":9765,"journal":{"name":"Chemical and Biochemical Engineering Quarterly","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2022-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Remediation of an Organochlorine Compound in an Unsaturated Zone Using a DL-Limonene Microemulsion System\",\"authors\":\"V. Campos, D. G. Marques, D. D. Anjos\",\"doi\":\"10.15255/cabeq.2021.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Contamination of the unsaturated zone, and hence, of groundwater by non-aqueous phase liquids has become a problem that arouses great concern due to the environmental damage it causes. Several efficient and economically beneficial techniques for the in situ treatment of contaminated soils have been applied quite frequently, including the so-called soil flushing processes. In this study, microemulsion systems were prepared using limonene, in the search for a formulation that would remove trichloroethene in soil. Limonene, a monocyclic monoterpene, is one of the main constituents of various essential oils of citrus fruits, such as oranges, tangerines and lemons. The results indicated that using a washing fluid containing 15 % DL-limonene microemulsion enabled the removal of 98.85 % of trichloroethene present in the soil after 30 minutes of residence time in the system. Hence, it can be concluded that the use of this microemulsion system is an inter-esting strategy for the remediation of soils contaminated with trichloroethene.\",\"PeriodicalId\":9765,\"journal\":{\"name\":\"Chemical and Biochemical Engineering Quarterly\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2022-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical and Biochemical Engineering Quarterly\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.15255/cabeq.2021.2024\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical and Biochemical Engineering Quarterly","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.15255/cabeq.2021.2024","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Remediation of an Organochlorine Compound in an Unsaturated Zone Using a DL-Limonene Microemulsion System
Contamination of the unsaturated zone, and hence, of groundwater by non-aqueous phase liquids has become a problem that arouses great concern due to the environmental damage it causes. Several efficient and economically beneficial techniques for the in situ treatment of contaminated soils have been applied quite frequently, including the so-called soil flushing processes. In this study, microemulsion systems were prepared using limonene, in the search for a formulation that would remove trichloroethene in soil. Limonene, a monocyclic monoterpene, is one of the main constituents of various essential oils of citrus fruits, such as oranges, tangerines and lemons. The results indicated that using a washing fluid containing 15 % DL-limonene microemulsion enabled the removal of 98.85 % of trichloroethene present in the soil after 30 minutes of residence time in the system. Hence, it can be concluded that the use of this microemulsion system is an inter-esting strategy for the remediation of soils contaminated with trichloroethene.
期刊介绍:
The journal provides an international forum for presentation of original papers, reviews and discussions on the latest developments in chemical and biochemical engineering. The scope of the journal is wide and no limitation except relevance to chemical and biochemical engineering is required.
The criteria for the acceptance of papers are originality, quality of work and clarity of style. All papers are subject to reviewing by at least two international experts (blind peer review).
The language of the journal is English. Final versions of the manuscripts are subject to metric (SI units and IUPAC recommendations) and English language reviewing.
Editor and Editorial board make the final decision about acceptance of a manuscript.
Page charges are excluded.