{"title":"关于广义次指数分布乘积卷积的一个注记","authors":"D. Konstantinides, R. Leipus, J. Šiaulys","doi":"10.15388/namc.2022.27.29405","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the stability property of the class of generalized subexponential distributions with respect to product-convolution. Assuming that the primary distribution is in the class of generalized subexponential distributions, we find conditions for the second distribution in order that their product-convolution belongs to the class of generalized subexponential distributions as well. The similar problem for the class of generalized subexponential positively decreasing-tailed distributions is considered.","PeriodicalId":49286,"journal":{"name":"Nonlinear Analysis-Modelling and Control","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2022-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A note on product-convolution for generalized subexponential distributions\",\"authors\":\"D. Konstantinides, R. Leipus, J. Šiaulys\",\"doi\":\"10.15388/namc.2022.27.29405\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider the stability property of the class of generalized subexponential distributions with respect to product-convolution. Assuming that the primary distribution is in the class of generalized subexponential distributions, we find conditions for the second distribution in order that their product-convolution belongs to the class of generalized subexponential distributions as well. The similar problem for the class of generalized subexponential positively decreasing-tailed distributions is considered.\",\"PeriodicalId\":49286,\"journal\":{\"name\":\"Nonlinear Analysis-Modelling and Control\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2022-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Modelling and Control\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.15388/namc.2022.27.29405\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Modelling and Control","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.15388/namc.2022.27.29405","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
A note on product-convolution for generalized subexponential distributions
In this paper, we consider the stability property of the class of generalized subexponential distributions with respect to product-convolution. Assuming that the primary distribution is in the class of generalized subexponential distributions, we find conditions for the second distribution in order that their product-convolution belongs to the class of generalized subexponential distributions as well. The similar problem for the class of generalized subexponential positively decreasing-tailed distributions is considered.
期刊介绍:
The scope of the journal is to provide a multidisciplinary forum for scientists, researchers and engineers involved in research and design of nonlinear processes and phenomena, including the nonlinear modelling of phenomena of the nature. The journal accepts contributions on nonlinear phenomena and processes in any field of science and technology.
The aims of the journal are: to provide a presentation of theoretical results and applications; to cover research results of multidisciplinary interest; to provide fast publishing of quality papers by extensive work of editors and referees; to provide an early access to the information by presenting the complete papers on Internet.