{"title":"有限群的非幂零图的直径","authors":"A. Lucchini","doi":"10.22108/TOC.2020.122329.1719","DOIUrl":null,"url":null,"abstract":"We prove that the graph obtained from the non-nilpotent graph of a finite group by deleting the isolated vertices is connected with diameter at most 3. This bound is the best possible.","PeriodicalId":43837,"journal":{"name":"Transactions on Combinatorics","volume":"9 1","pages":"111-114"},"PeriodicalIF":0.6000,"publicationDate":"2020-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"The diameter of the non-nilpotent graph of a finite group\",\"authors\":\"A. Lucchini\",\"doi\":\"10.22108/TOC.2020.122329.1719\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that the graph obtained from the non-nilpotent graph of a finite group by deleting the isolated vertices is connected with diameter at most 3. This bound is the best possible.\",\"PeriodicalId\":43837,\"journal\":{\"name\":\"Transactions on Combinatorics\",\"volume\":\"9 1\",\"pages\":\"111-114\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions on Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22108/TOC.2020.122329.1719\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22108/TOC.2020.122329.1719","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
The diameter of the non-nilpotent graph of a finite group
We prove that the graph obtained from the non-nilpotent graph of a finite group by deleting the isolated vertices is connected with diameter at most 3. This bound is the best possible.