{"title":"基于样条的试件形状优化鲁棒材料模型校准","authors":"M. Chapelier, R. Bouclier, J. Passieux","doi":"10.21203/rs.3.rs-1153344/v1","DOIUrl":null,"url":null,"abstract":"Identification from field measurements allows several parameters to be identified from a single test, provided that the measurements are sensitive enough to the parameters to be identified. To do this, authors use empirically defined geometries (with holes, notches...). The first attempts to optimize the specimen to maximize the sensitivity of the measurement are linked to a design space that is either very small (parametric optimization), which does not allow the exploration of very different designs, or, conversely, very large (topology optimization), which sometimes leads to designs that are not regular and cannot be manufactured. In this paper, an intermediate approach based on a non-invasive CAD-inspired optimization strategy is proposed. It relies on the definition of univariate spline Free-Form Deformation boxes to reduce the design space and thus regularize the problem. Then, from the modeling point of view, a new objective function is proposed that takes into account the experimental setup and constraint functions are added to ensure that the gain is real and the shape physically sound. Several examples show that with this method and at low cost, one can significantly improve the identification of constitutive parameters without changing the experimental setup.","PeriodicalId":37424,"journal":{"name":"Advanced Modeling and Simulation in Engineering Sciences","volume":"9 1","pages":"1-28"},"PeriodicalIF":2.0000,"publicationDate":"2022-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spline-based specimen shape optimization for robust material model calibration\",\"authors\":\"M. Chapelier, R. Bouclier, J. Passieux\",\"doi\":\"10.21203/rs.3.rs-1153344/v1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Identification from field measurements allows several parameters to be identified from a single test, provided that the measurements are sensitive enough to the parameters to be identified. To do this, authors use empirically defined geometries (with holes, notches...). The first attempts to optimize the specimen to maximize the sensitivity of the measurement are linked to a design space that is either very small (parametric optimization), which does not allow the exploration of very different designs, or, conversely, very large (topology optimization), which sometimes leads to designs that are not regular and cannot be manufactured. In this paper, an intermediate approach based on a non-invasive CAD-inspired optimization strategy is proposed. It relies on the definition of univariate spline Free-Form Deformation boxes to reduce the design space and thus regularize the problem. Then, from the modeling point of view, a new objective function is proposed that takes into account the experimental setup and constraint functions are added to ensure that the gain is real and the shape physically sound. Several examples show that with this method and at low cost, one can significantly improve the identification of constitutive parameters without changing the experimental setup.\",\"PeriodicalId\":37424,\"journal\":{\"name\":\"Advanced Modeling and Simulation in Engineering Sciences\",\"volume\":\"9 1\",\"pages\":\"1-28\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2022-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Modeling and Simulation in Engineering Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21203/rs.3.rs-1153344/v1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Modeling and Simulation in Engineering Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21203/rs.3.rs-1153344/v1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
Spline-based specimen shape optimization for robust material model calibration
Identification from field measurements allows several parameters to be identified from a single test, provided that the measurements are sensitive enough to the parameters to be identified. To do this, authors use empirically defined geometries (with holes, notches...). The first attempts to optimize the specimen to maximize the sensitivity of the measurement are linked to a design space that is either very small (parametric optimization), which does not allow the exploration of very different designs, or, conversely, very large (topology optimization), which sometimes leads to designs that are not regular and cannot be manufactured. In this paper, an intermediate approach based on a non-invasive CAD-inspired optimization strategy is proposed. It relies on the definition of univariate spline Free-Form Deformation boxes to reduce the design space and thus regularize the problem. Then, from the modeling point of view, a new objective function is proposed that takes into account the experimental setup and constraint functions are added to ensure that the gain is real and the shape physically sound. Several examples show that with this method and at low cost, one can significantly improve the identification of constitutive parameters without changing the experimental setup.
期刊介绍:
The research topics addressed by Advanced Modeling and Simulation in Engineering Sciences (AMSES) cover the vast domain of the advanced modeling and simulation of materials, processes and structures governed by the laws of mechanics. The emphasis is on advanced and innovative modeling approaches and numerical strategies. The main objective is to describe the actual physics of large mechanical systems with complicated geometries as accurately as possible using complex, highly nonlinear and coupled multiphysics and multiscale models, and then to carry out simulations with these complex models as rapidly as possible. In other words, this research revolves around efficient numerical modeling along with model verification and validation. Therefore, the corresponding papers deal with advanced modeling and simulation, efficient optimization, inverse analysis, data-driven computation and simulation-based control. These challenging issues require multidisciplinary efforts – particularly in modeling, numerical analysis and computer science – which are treated in this journal.