{"title":"与分数余弦和正弦级数相关的离散卷积","authors":"Xiuxiu Gao, Qiang Feng, Yinyin Mei, Yi Xiang","doi":"10.15918/J.JBIT1004-0579.2021.040","DOIUrl":null,"url":null,"abstract":"Fractional sine series (FRSS) and fractional cosine series (FRCS) are the discrete form of the fractional cosine transform (FRCT) and fractional sine transform (FRST). The recent studies have shown that discrete convolution is widely used in optics, signal processing and applied mathematics. In this paper, firstly, the definitions of fractional sine series (FRSS) and fractional cosine series (FRCS) are presented. Secondly, the discrete convolution operations and convolution theorems for fractional sine and cosine series are given. The relationship of two convolution operations is presented. Lastly, the discrete Young’s type inequality is established. The proposed theory plays an important role in digital filtering and the solution of differential and integral equations.","PeriodicalId":39252,"journal":{"name":"Journal of Beijing Institute of Technology (English Edition)","volume":"30 1","pages":"305-310"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discrete Convolution Associated with Fractional Cosine and Sine Series\",\"authors\":\"Xiuxiu Gao, Qiang Feng, Yinyin Mei, Yi Xiang\",\"doi\":\"10.15918/J.JBIT1004-0579.2021.040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fractional sine series (FRSS) and fractional cosine series (FRCS) are the discrete form of the fractional cosine transform (FRCT) and fractional sine transform (FRST). The recent studies have shown that discrete convolution is widely used in optics, signal processing and applied mathematics. In this paper, firstly, the definitions of fractional sine series (FRSS) and fractional cosine series (FRCS) are presented. Secondly, the discrete convolution operations and convolution theorems for fractional sine and cosine series are given. The relationship of two convolution operations is presented. Lastly, the discrete Young’s type inequality is established. The proposed theory plays an important role in digital filtering and the solution of differential and integral equations.\",\"PeriodicalId\":39252,\"journal\":{\"name\":\"Journal of Beijing Institute of Technology (English Edition)\",\"volume\":\"30 1\",\"pages\":\"305-310\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Beijing Institute of Technology (English Edition)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15918/J.JBIT1004-0579.2021.040\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Beijing Institute of Technology (English Edition)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15918/J.JBIT1004-0579.2021.040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
Discrete Convolution Associated with Fractional Cosine and Sine Series
Fractional sine series (FRSS) and fractional cosine series (FRCS) are the discrete form of the fractional cosine transform (FRCT) and fractional sine transform (FRST). The recent studies have shown that discrete convolution is widely used in optics, signal processing and applied mathematics. In this paper, firstly, the definitions of fractional sine series (FRSS) and fractional cosine series (FRCS) are presented. Secondly, the discrete convolution operations and convolution theorems for fractional sine and cosine series are given. The relationship of two convolution operations is presented. Lastly, the discrete Young’s type inequality is established. The proposed theory plays an important role in digital filtering and the solution of differential and integral equations.