与分数余弦和正弦级数相关的离散卷积

Q4 Engineering
Xiuxiu Gao, Qiang Feng, Yinyin Mei, Yi Xiang
{"title":"与分数余弦和正弦级数相关的离散卷积","authors":"Xiuxiu Gao, Qiang Feng, Yinyin Mei, Yi Xiang","doi":"10.15918/J.JBIT1004-0579.2021.040","DOIUrl":null,"url":null,"abstract":"Fractional sine series (FRSS) and fractional cosine series (FRCS) are the discrete form of the fractional cosine transform (FRCT) and fractional sine transform (FRST). The recent studies have shown that discrete convolution is widely used in optics, signal processing and applied mathematics. In this paper, firstly, the definitions of fractional sine series (FRSS) and fractional cosine series (FRCS) are presented. Secondly, the discrete convolution operations and convolution theorems for fractional sine and cosine series are given. The relationship of two convolution operations is presented. Lastly, the discrete Young’s type inequality is established. The proposed theory plays an important role in digital filtering and the solution of differential and integral equations.","PeriodicalId":39252,"journal":{"name":"Journal of Beijing Institute of Technology (English Edition)","volume":"30 1","pages":"305-310"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discrete Convolution Associated with Fractional Cosine and Sine Series\",\"authors\":\"Xiuxiu Gao, Qiang Feng, Yinyin Mei, Yi Xiang\",\"doi\":\"10.15918/J.JBIT1004-0579.2021.040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fractional sine series (FRSS) and fractional cosine series (FRCS) are the discrete form of the fractional cosine transform (FRCT) and fractional sine transform (FRST). The recent studies have shown that discrete convolution is widely used in optics, signal processing and applied mathematics. In this paper, firstly, the definitions of fractional sine series (FRSS) and fractional cosine series (FRCS) are presented. Secondly, the discrete convolution operations and convolution theorems for fractional sine and cosine series are given. The relationship of two convolution operations is presented. Lastly, the discrete Young’s type inequality is established. The proposed theory plays an important role in digital filtering and the solution of differential and integral equations.\",\"PeriodicalId\":39252,\"journal\":{\"name\":\"Journal of Beijing Institute of Technology (English Edition)\",\"volume\":\"30 1\",\"pages\":\"305-310\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Beijing Institute of Technology (English Edition)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15918/J.JBIT1004-0579.2021.040\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Beijing Institute of Technology (English Edition)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15918/J.JBIT1004-0579.2021.040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

分数正弦级数(FRSS)和分数余弦级数(FRCS)是分数余弦变换(FRCT)和分数正弦变换(FRST)的离散形式。最近的研究表明,离散卷积在光学、信号处理和应用数学中有着广泛的应用。本文首先给出了分数正弦级数(FRSS)和分数余弦级数(FRCS)的定义。其次,给出了分数正弦和余弦级数的离散卷积运算和卷积定理。给出了两个卷积运算的关系。最后,建立了离散杨型不等式。所提出的理论在数字滤波以及微分方程和积分方程的求解中起着重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discrete Convolution Associated with Fractional Cosine and Sine Series
Fractional sine series (FRSS) and fractional cosine series (FRCS) are the discrete form of the fractional cosine transform (FRCT) and fractional sine transform (FRST). The recent studies have shown that discrete convolution is widely used in optics, signal processing and applied mathematics. In this paper, firstly, the definitions of fractional sine series (FRSS) and fractional cosine series (FRCS) are presented. Secondly, the discrete convolution operations and convolution theorems for fractional sine and cosine series are given. The relationship of two convolution operations is presented. Lastly, the discrete Young’s type inequality is established. The proposed theory plays an important role in digital filtering and the solution of differential and integral equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
2437
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信