{"title":"运动/指数加速垂直板对混合纳米流体非定常流动和换热的影响","authors":"V. Rajesh, H. Öztop, N. Abu‐Hamdeh","doi":"10.1166/jon.2023.2023","DOIUrl":null,"url":null,"abstract":"The main goal of this work is to explore exact analytical solutions for the transient hybrid nanofluid flow with heat transfer owing to a moving/exponentially accelerating infinite flat vertical plate with heat flux boundary conditions. Further, the uniqueness of this work is to investigate\n the impact of different types of hybrid nanofluids on heat transfer and unsteady flow features in the existence of thermal radiation and heat flux boundary conditions. For engineering variables like Nusselt number and skin friction coefficient, along with temperature and velocity profiles,\n graphs are used to reveal the results of the Laplace transform method. Increased heat transfer and friction values have been found for an exponentially accelerating plate. The findings can be utilized in heat exchangers as well as in electronics and chemical and biological reactors.","PeriodicalId":47161,"journal":{"name":"Journal of Nanofluids","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Impact of Moving/Exponentially Accelerated Vertical Plate on Unsteady Flow and Heat Transfer in Hybrid Nanofluids\",\"authors\":\"V. Rajesh, H. Öztop, N. Abu‐Hamdeh\",\"doi\":\"10.1166/jon.2023.2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main goal of this work is to explore exact analytical solutions for the transient hybrid nanofluid flow with heat transfer owing to a moving/exponentially accelerating infinite flat vertical plate with heat flux boundary conditions. Further, the uniqueness of this work is to investigate\\n the impact of different types of hybrid nanofluids on heat transfer and unsteady flow features in the existence of thermal radiation and heat flux boundary conditions. For engineering variables like Nusselt number and skin friction coefficient, along with temperature and velocity profiles,\\n graphs are used to reveal the results of the Laplace transform method. Increased heat transfer and friction values have been found for an exponentially accelerating plate. The findings can be utilized in heat exchangers as well as in electronics and chemical and biological reactors.\",\"PeriodicalId\":47161,\"journal\":{\"name\":\"Journal of Nanofluids\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanofluids\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1166/jon.2023.2023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanofluids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/jon.2023.2023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
Impact of Moving/Exponentially Accelerated Vertical Plate on Unsteady Flow and Heat Transfer in Hybrid Nanofluids
The main goal of this work is to explore exact analytical solutions for the transient hybrid nanofluid flow with heat transfer owing to a moving/exponentially accelerating infinite flat vertical plate with heat flux boundary conditions. Further, the uniqueness of this work is to investigate
the impact of different types of hybrid nanofluids on heat transfer and unsteady flow features in the existence of thermal radiation and heat flux boundary conditions. For engineering variables like Nusselt number and skin friction coefficient, along with temperature and velocity profiles,
graphs are used to reveal the results of the Laplace transform method. Increased heat transfer and friction values have been found for an exponentially accelerating plate. The findings can be utilized in heat exchangers as well as in electronics and chemical and biological reactors.
期刊介绍:
Journal of Nanofluids (JON) is an international multidisciplinary peer-reviewed journal covering a wide range of research topics in the field of nanofluids and fluid science. It is an ideal and unique reference source for scientists and engineers working in this important and emerging research field of science, engineering and technology. The journal publishes full research papers, review articles with author''s photo and short biography, and communications of important new findings encompassing the fundamental and applied research in all aspects of science and engineering of nanofluids and fluid science related developing technologies.