振荡生物系统中多重同步和多重节律性的其他模式

IF 3.6 3区 生物学 Q1 BIOLOGY
A. Goldbeter, Jie Yan
{"title":"振荡生物系统中多重同步和多重节律性的其他模式","authors":"A. Goldbeter, Jie Yan","doi":"10.1098/rsfs.2021.0089","DOIUrl":null,"url":null,"abstract":"While experimental and theoretical studies have established the prevalence of rhythmic behaviour at all levels of biological organization, less common is the coexistence between multiple oscillatory regimes (multi-rhythmicity), which has been predicted by a variety of models for biological oscillators. The phenomenon of multi-rhythmicity involves, most commonly, the coexistence between two (birhythmicity) or three (trirhythmicity) distinct regimes of self-sustained oscillations. Birhythmicity has been observed experimentally in a few chemical reactions and in biological examples pertaining to cardiac cell physiology, neurobiology, human voice patterns and ecology. The present study consists of two parts. We first review the mechanisms underlying multi-rhythmicity in models for biochemical and cellular oscillations in which the phenomenon was investigated over the years. In the second part, we focus on the coupling of the cell cycle and the circadian clock and show how an additional source of multi-rhythmicity arises from the bidirectional coupling of these two cellular oscillators. Upon bidirectional coupling, the two oscillatory networks generally synchronize in a unique manner characterized by a single, common period. In some conditions, however, the two oscillators may synchronize in two or three different ways characterized by distinct waveforms and periods. We refer to this type of multi-rhythmicity as ‘multi-synchronization’.","PeriodicalId":13795,"journal":{"name":"Interface Focus","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2022-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Multi-synchronization and other patterns of multi-rhythmicity in oscillatory biological systems\",\"authors\":\"A. Goldbeter, Jie Yan\",\"doi\":\"10.1098/rsfs.2021.0089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While experimental and theoretical studies have established the prevalence of rhythmic behaviour at all levels of biological organization, less common is the coexistence between multiple oscillatory regimes (multi-rhythmicity), which has been predicted by a variety of models for biological oscillators. The phenomenon of multi-rhythmicity involves, most commonly, the coexistence between two (birhythmicity) or three (trirhythmicity) distinct regimes of self-sustained oscillations. Birhythmicity has been observed experimentally in a few chemical reactions and in biological examples pertaining to cardiac cell physiology, neurobiology, human voice patterns and ecology. The present study consists of two parts. We first review the mechanisms underlying multi-rhythmicity in models for biochemical and cellular oscillations in which the phenomenon was investigated over the years. In the second part, we focus on the coupling of the cell cycle and the circadian clock and show how an additional source of multi-rhythmicity arises from the bidirectional coupling of these two cellular oscillators. Upon bidirectional coupling, the two oscillatory networks generally synchronize in a unique manner characterized by a single, common period. In some conditions, however, the two oscillators may synchronize in two or three different ways characterized by distinct waveforms and periods. We refer to this type of multi-rhythmicity as ‘multi-synchronization’.\",\"PeriodicalId\":13795,\"journal\":{\"name\":\"Interface Focus\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2022-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interface Focus\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1098/rsfs.2021.0089\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interface Focus","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1098/rsfs.2021.0089","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 12

摘要

虽然实验和理论研究已经确定了节律性行为在生物组织各个层面的普遍性,但不太常见的是多种振荡机制之间的共存(多节律性),这已经被各种生物振荡模型预测。多节律性现象最常见的是两种(双节律性)或三种(三节律性)不同的自我维持振荡状态之间的共存。在一些化学反应和与心脏细胞生理学、神经生物学、人类声音模式和生态学有关的生物学例子中,已经通过实验观察到了心律失常。本研究由两部分组成。我们首先回顾了多年来研究生物化学和细胞振荡模型中多节律性的机制。在第二部分中,我们关注细胞周期和昼夜节律时钟的耦合,并展示了这两个细胞振荡器的双向耦合如何产生多节律性的额外来源。在双向耦合时,两个振荡网络通常以独特的方式同步,其特征在于单个公共周期。然而,在某些条件下,两个振荡器可以以两种或三种不同的方式同步,其特征在于不同的波形和周期。我们将这种类型的多节奏称为“多同步”。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-synchronization and other patterns of multi-rhythmicity in oscillatory biological systems
While experimental and theoretical studies have established the prevalence of rhythmic behaviour at all levels of biological organization, less common is the coexistence between multiple oscillatory regimes (multi-rhythmicity), which has been predicted by a variety of models for biological oscillators. The phenomenon of multi-rhythmicity involves, most commonly, the coexistence between two (birhythmicity) or three (trirhythmicity) distinct regimes of self-sustained oscillations. Birhythmicity has been observed experimentally in a few chemical reactions and in biological examples pertaining to cardiac cell physiology, neurobiology, human voice patterns and ecology. The present study consists of two parts. We first review the mechanisms underlying multi-rhythmicity in models for biochemical and cellular oscillations in which the phenomenon was investigated over the years. In the second part, we focus on the coupling of the cell cycle and the circadian clock and show how an additional source of multi-rhythmicity arises from the bidirectional coupling of these two cellular oscillators. Upon bidirectional coupling, the two oscillatory networks generally synchronize in a unique manner characterized by a single, common period. In some conditions, however, the two oscillators may synchronize in two or three different ways characterized by distinct waveforms and periods. We refer to this type of multi-rhythmicity as ‘multi-synchronization’.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Interface Focus
Interface Focus BIOLOGY-
CiteScore
9.20
自引率
0.00%
发文量
44
审稿时长
6-12 weeks
期刊介绍: Each Interface Focus themed issue is devoted to a particular subject at the interface of the physical and life sciences. Formed of high-quality articles, they aim to facilitate cross-disciplinary research across this traditional divide by acting as a forum accessible to all. Topics may be newly emerging areas of research or dynamic aspects of more established fields. Organisers of each Interface Focus are strongly encouraged to contextualise the journal within their chosen subject.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信