PgLEA基因是人参胚胎发生晚期丰富蛋白的基因,可增强转基因拟南芥的耐旱性和耐盐性

IF 0.8 4区 生物学 Q4 PLANT SCIENCES
W. Lian, R. Sun, L. Zhang, T. Sun, F. Hui, L. Feng, Y. Zhao
{"title":"PgLEA基因是人参胚胎发生晚期丰富蛋白的基因,可增强转基因拟南芥的耐旱性和耐盐性","authors":"W. Lian, R. Sun, L. Zhang, T. Sun, F. Hui, L. Feng, Y. Zhao","doi":"10.32615/bp.2021.063","DOIUrl":null,"url":null,"abstract":"Plants are usually sessile species and their growth and development are substantially influenced by the surrounding environment. Additionally, diverse environmental stressors, including drought and high salinity, severely restrict plant development, damage plant tissues, and under extreme conditions, can lead to death (Wang et al. 2003, Wu et al. 2014). Plants have various physiological and biochemical mechanisms to mitigate the harm caused by adverse conditions (Zhang et al. 2018). When plants are subjected to abiotic stress, they often synthesize a range of functional proteins that protect different tissues from damage. Among the plant cell-protective proteins induced by abiotic stress, there has been considerable interest in the late embryogenesis","PeriodicalId":8912,"journal":{"name":"Biologia Plantarum","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PgLEA, a gene for late embryogenesis abundant proteinfrom Panax ginseng, enhances drought and salt tolerancein transgenic Arabidopsis thaliana\",\"authors\":\"W. Lian, R. Sun, L. Zhang, T. Sun, F. Hui, L. Feng, Y. Zhao\",\"doi\":\"10.32615/bp.2021.063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Plants are usually sessile species and their growth and development are substantially influenced by the surrounding environment. Additionally, diverse environmental stressors, including drought and high salinity, severely restrict plant development, damage plant tissues, and under extreme conditions, can lead to death (Wang et al. 2003, Wu et al. 2014). Plants have various physiological and biochemical mechanisms to mitigate the harm caused by adverse conditions (Zhang et al. 2018). When plants are subjected to abiotic stress, they often synthesize a range of functional proteins that protect different tissues from damage. Among the plant cell-protective proteins induced by abiotic stress, there has been considerable interest in the late embryogenesis\",\"PeriodicalId\":8912,\"journal\":{\"name\":\"Biologia Plantarum\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biologia Plantarum\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.32615/bp.2021.063\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biologia Plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.32615/bp.2021.063","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

植物通常是无根的物种,它们的生长发育很大程度上受周围环境的影响。此外,干旱和高盐度等多种环境胁迫因素严重限制植物发育,损害植物组织,在极端条件下可导致死亡(Wang et al. 2003, Wu et al. 2014)。植物有多种生理生化机制来减轻不利条件造成的伤害(Zhang et al. 2018)。当植物受到非生物胁迫时,它们通常会合成一系列保护不同组织免受损害的功能性蛋白质。在非生物胁迫诱导的植物细胞保护蛋白中,晚期胚胎发生蛋白受到了广泛关注
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PgLEA, a gene for late embryogenesis abundant proteinfrom Panax ginseng, enhances drought and salt tolerancein transgenic Arabidopsis thaliana
Plants are usually sessile species and their growth and development are substantially influenced by the surrounding environment. Additionally, diverse environmental stressors, including drought and high salinity, severely restrict plant development, damage plant tissues, and under extreme conditions, can lead to death (Wang et al. 2003, Wu et al. 2014). Plants have various physiological and biochemical mechanisms to mitigate the harm caused by adverse conditions (Zhang et al. 2018). When plants are subjected to abiotic stress, they often synthesize a range of functional proteins that protect different tissues from damage. Among the plant cell-protective proteins induced by abiotic stress, there has been considerable interest in the late embryogenesis
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biologia Plantarum
Biologia Plantarum 生物-植物科学
CiteScore
2.80
自引率
0.00%
发文量
28
审稿时长
3.3 months
期刊介绍: BIOLOGIA PLANTARUM is an international journal for experimental botany. It publishes original scientific papers and brief communications, reviews on specialized topics, and book reviews in plant physiology, plant biochemistry and biophysics, physiological anatomy, ecophysiology, genetics, molecular biology, cell biology, evolution, and pathophysiology. All papers should contribute substantially to the current level of plant science and combine originality with a potential general interest. The journal focuses on model and crop plants, as well as on under-investigated species.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信