{"title":"阿根廷寒温带港口浮游植物群落季节性与自养碳动态","authors":"R. V. Barbosa, S. Halac, E. Schwindt, M. Tatián","doi":"10.1080/09670262.2021.1995630","DOIUrl":null,"url":null,"abstract":"Abstract The changes within and between seasons in phytoplankton composition and abundance determine the carbon biomass available for upper levels of the food web. Temporal changes in phytoplankton community and environmental parameters in a port in Puerto Madryn, Southwest Atlantic were analysed. During an annual period (2011–2012), samples of surface seawater were collected approximately monthly. We determined phytoplankton community structure (species composition and abundance) and biomass (determined by carbon content and chlorophyll a (Chl a)). Water temperature, salinity and transparency were measured when sampling the surface water and local meteorological data were considered. The main groups observed were diatoms (Bacillariophyta; the most abundant during the concentration peaks of Chl a), dinoflagellates (Dinophyta) and flagellates, which mainly included species of Cryptophyta and Chlorophyta. Diatoms exhibited blooms in March (summer–autumn) and September (spring), represented by Skeletonema costatum and Pseudo-nitzschia spp. respectively. Dinoflagellates contributed to the highest carbon biomass, with peaks in January (summer) and April (autumn), exemplified by Prorocentrum micans and Scrippsiella acuminata, respectively. Temporal differences in community composition were related to the seasonal changes in temperature, solar irradiance, precipitation, salinity and wind velocity. The environmental conditions seem not only to determine the species composition but also cell size distribution: nanoplanktonic (≤ 20 µm) species dominated mainly during late spring, summer and early winter while microplanktonic species (> 20 µm) during late winter and early spring. Our results showed within-season changes and show that not only Chl a, but also carbon content can be considered, as the former is a biased estimator of phytoplankton biomass. This study provides the first seasonally resolved estimation in the area of the carbon biomass available for upper levels of the food web and a necessary information for future scenarios prediction. HIGHLIGHTS• Two diatom blooms were followed by an increase in dinoflagellate abundance.• Annual environmental conditions drive the phytoplankton community structure.• First seasonally estimation of autotrophic biomass availability for Patagonian trophic web.","PeriodicalId":12032,"journal":{"name":"European Journal of Phycology","volume":"57 1","pages":"343 - 356"},"PeriodicalIF":2.0000,"publicationDate":"2021-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Seasonality of phytoplankton community and dynamics of autotrophic carbon in a cold temperate port (Argentina)\",\"authors\":\"R. V. Barbosa, S. Halac, E. Schwindt, M. Tatián\",\"doi\":\"10.1080/09670262.2021.1995630\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The changes within and between seasons in phytoplankton composition and abundance determine the carbon biomass available for upper levels of the food web. Temporal changes in phytoplankton community and environmental parameters in a port in Puerto Madryn, Southwest Atlantic were analysed. During an annual period (2011–2012), samples of surface seawater were collected approximately monthly. We determined phytoplankton community structure (species composition and abundance) and biomass (determined by carbon content and chlorophyll a (Chl a)). Water temperature, salinity and transparency were measured when sampling the surface water and local meteorological data were considered. The main groups observed were diatoms (Bacillariophyta; the most abundant during the concentration peaks of Chl a), dinoflagellates (Dinophyta) and flagellates, which mainly included species of Cryptophyta and Chlorophyta. Diatoms exhibited blooms in March (summer–autumn) and September (spring), represented by Skeletonema costatum and Pseudo-nitzschia spp. respectively. Dinoflagellates contributed to the highest carbon biomass, with peaks in January (summer) and April (autumn), exemplified by Prorocentrum micans and Scrippsiella acuminata, respectively. Temporal differences in community composition were related to the seasonal changes in temperature, solar irradiance, precipitation, salinity and wind velocity. The environmental conditions seem not only to determine the species composition but also cell size distribution: nanoplanktonic (≤ 20 µm) species dominated mainly during late spring, summer and early winter while microplanktonic species (> 20 µm) during late winter and early spring. Our results showed within-season changes and show that not only Chl a, but also carbon content can be considered, as the former is a biased estimator of phytoplankton biomass. This study provides the first seasonally resolved estimation in the area of the carbon biomass available for upper levels of the food web and a necessary information for future scenarios prediction. HIGHLIGHTS• Two diatom blooms were followed by an increase in dinoflagellate abundance.• Annual environmental conditions drive the phytoplankton community structure.• First seasonally estimation of autotrophic biomass availability for Patagonian trophic web.\",\"PeriodicalId\":12032,\"journal\":{\"name\":\"European Journal of Phycology\",\"volume\":\"57 1\",\"pages\":\"343 - 356\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2021-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Phycology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/09670262.2021.1995630\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MARINE & FRESHWATER BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Phycology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/09670262.2021.1995630","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
Seasonality of phytoplankton community and dynamics of autotrophic carbon in a cold temperate port (Argentina)
Abstract The changes within and between seasons in phytoplankton composition and abundance determine the carbon biomass available for upper levels of the food web. Temporal changes in phytoplankton community and environmental parameters in a port in Puerto Madryn, Southwest Atlantic were analysed. During an annual period (2011–2012), samples of surface seawater were collected approximately monthly. We determined phytoplankton community structure (species composition and abundance) and biomass (determined by carbon content and chlorophyll a (Chl a)). Water temperature, salinity and transparency were measured when sampling the surface water and local meteorological data were considered. The main groups observed were diatoms (Bacillariophyta; the most abundant during the concentration peaks of Chl a), dinoflagellates (Dinophyta) and flagellates, which mainly included species of Cryptophyta and Chlorophyta. Diatoms exhibited blooms in March (summer–autumn) and September (spring), represented by Skeletonema costatum and Pseudo-nitzschia spp. respectively. Dinoflagellates contributed to the highest carbon biomass, with peaks in January (summer) and April (autumn), exemplified by Prorocentrum micans and Scrippsiella acuminata, respectively. Temporal differences in community composition were related to the seasonal changes in temperature, solar irradiance, precipitation, salinity and wind velocity. The environmental conditions seem not only to determine the species composition but also cell size distribution: nanoplanktonic (≤ 20 µm) species dominated mainly during late spring, summer and early winter while microplanktonic species (> 20 µm) during late winter and early spring. Our results showed within-season changes and show that not only Chl a, but also carbon content can be considered, as the former is a biased estimator of phytoplankton biomass. This study provides the first seasonally resolved estimation in the area of the carbon biomass available for upper levels of the food web and a necessary information for future scenarios prediction. HIGHLIGHTS• Two diatom blooms were followed by an increase in dinoflagellate abundance.• Annual environmental conditions drive the phytoplankton community structure.• First seasonally estimation of autotrophic biomass availability for Patagonian trophic web.
期刊介绍:
The European Journal of Phycology is an important focus for the activities of algal researchers all over the world. The Editors-in-Chief are assisted by an international team of Associate Editors who are experts in the following fields: macroalgal ecology, microalgal ecology, physiology and biochemistry, cell biology, molecular biology, macroalgal and microalgal systematics, applied phycology and biotechnology. The European Journal of Phycology publishes papers on all aspects of algae, including cyanobacteria. Articles may be in the form of primary research papers and reviews of topical subjects.
The journal publishes high quality research and is well cited, with a consistently good Impact Factor.