块稀疏恢复和秩最小化的加权lp−l1最小化方法

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Yun Cai
{"title":"块稀疏恢复和秩最小化的加权lp−l1最小化方法","authors":"Yun Cai","doi":"10.1142/s0219530520500086","DOIUrl":null,"url":null,"abstract":"This paper considers block sparse recovery and rank minimization problems from incomplete linear measurements. We study the weighted [Formula: see text] [Formula: see text] norms as a nonconvex metric for recovering block sparse signals and low-rank matrices. Based on the block [Formula: see text]-restricted isometry property (abbreviated as block [Formula: see text]-RIP) and matrix [Formula: see text]-RIP, we prove that the weighted [Formula: see text] minimization can guarantee the exact recovery for block sparse signals and low-rank matrices. We also give the stable recovery results for approximately block sparse signals and approximately low-rank matrices in noisy measurements cases. Our results give the theoretical support for block sparse recovery and rank minimization problems.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2020-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/s0219530520500086","citationCount":"7","resultStr":"{\"title\":\"Weighted lp − l1 minimization methods for block sparse recovery and rank minimization\",\"authors\":\"Yun Cai\",\"doi\":\"10.1142/s0219530520500086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers block sparse recovery and rank minimization problems from incomplete linear measurements. We study the weighted [Formula: see text] [Formula: see text] norms as a nonconvex metric for recovering block sparse signals and low-rank matrices. Based on the block [Formula: see text]-restricted isometry property (abbreviated as block [Formula: see text]-RIP) and matrix [Formula: see text]-RIP, we prove that the weighted [Formula: see text] minimization can guarantee the exact recovery for block sparse signals and low-rank matrices. We also give the stable recovery results for approximately block sparse signals and approximately low-rank matrices in noisy measurements cases. Our results give the theoretical support for block sparse recovery and rank minimization problems.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2020-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1142/s0219530520500086\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219530520500086\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219530520500086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 7

摘要

本文考虑了不完全线性测量的块稀疏恢复和秩最小化问题。我们研究了加权[公式:见正文][公式:见文本]范数作为一种非凸度量,用于恢复块稀疏信号和低秩矩阵。基于块[公式:见文本]-受限等距性质(简称块[公式,见文本]-RIP)和矩阵[公式,参见文本]-RIP,我们证明了加权[公式,看文本]最小化可以保证块稀疏信号和低秩矩阵的精确恢复。我们还给出了在噪声测量情况下近似块稀疏信号和近似低秩矩阵的稳定恢复结果。我们的结果为块稀疏恢复和秩最小化问题提供了理论支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Weighted lp − l1 minimization methods for block sparse recovery and rank minimization
This paper considers block sparse recovery and rank minimization problems from incomplete linear measurements. We study the weighted [Formula: see text] [Formula: see text] norms as a nonconvex metric for recovering block sparse signals and low-rank matrices. Based on the block [Formula: see text]-restricted isometry property (abbreviated as block [Formula: see text]-RIP) and matrix [Formula: see text]-RIP, we prove that the weighted [Formula: see text] minimization can guarantee the exact recovery for block sparse signals and low-rank matrices. We also give the stable recovery results for approximately block sparse signals and approximately low-rank matrices in noisy measurements cases. Our results give the theoretical support for block sparse recovery and rank minimization problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信