{"title":"大型引水工程冰塞事件应急干预模式","authors":"Zepeng Xu, Mengkai Liu, Guanghua Guan, Xinlei Guo","doi":"10.2166/nh.2023.029","DOIUrl":null,"url":null,"abstract":"\n The formation of ice jams is sudden, and they will cause abnormal water level fluctuations in water diversion projects, affecting the water supply and even causing severe flood disasters. Based on the characteristics of the Middle Route of the South-to-North Water Diversion Project, this paper uses the numerical simulation method to establish an emergency intervention effect simulation model for ice jam events. The hydraulic response characteristics of the project under gate group scheduling and taking different emergency measures are analyzed with the water level deviation and stabilization time consumption of the pool as indicators. Moreover, this paper proposes an emergency intervention mode for ice jam events. The results show that using the gate group scheduling after ice jam events will cause a sharp rise in the upstream water level of the pool where the ice jams are located. Also, compared with other emergency measures, the electric heating ice melting measure has less influence on water level, and the de-icing effect is better. Finally, the emergency intervention mode can significantly reduce the maximum water level deviation and shorten the time required to stabilize the water level.","PeriodicalId":55040,"journal":{"name":"Hydrology Research","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Emergency intervention modes for ice jam events in large-scale water diversion projects\",\"authors\":\"Zepeng Xu, Mengkai Liu, Guanghua Guan, Xinlei Guo\",\"doi\":\"10.2166/nh.2023.029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The formation of ice jams is sudden, and they will cause abnormal water level fluctuations in water diversion projects, affecting the water supply and even causing severe flood disasters. Based on the characteristics of the Middle Route of the South-to-North Water Diversion Project, this paper uses the numerical simulation method to establish an emergency intervention effect simulation model for ice jam events. The hydraulic response characteristics of the project under gate group scheduling and taking different emergency measures are analyzed with the water level deviation and stabilization time consumption of the pool as indicators. Moreover, this paper proposes an emergency intervention mode for ice jam events. The results show that using the gate group scheduling after ice jam events will cause a sharp rise in the upstream water level of the pool where the ice jams are located. Also, compared with other emergency measures, the electric heating ice melting measure has less influence on water level, and the de-icing effect is better. Finally, the emergency intervention mode can significantly reduce the maximum water level deviation and shorten the time required to stabilize the water level.\",\"PeriodicalId\":55040,\"journal\":{\"name\":\"Hydrology Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hydrology Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.2166/nh.2023.029\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrology Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2166/nh.2023.029","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Environmental Science","Score":null,"Total":0}
Emergency intervention modes for ice jam events in large-scale water diversion projects
The formation of ice jams is sudden, and they will cause abnormal water level fluctuations in water diversion projects, affecting the water supply and even causing severe flood disasters. Based on the characteristics of the Middle Route of the South-to-North Water Diversion Project, this paper uses the numerical simulation method to establish an emergency intervention effect simulation model for ice jam events. The hydraulic response characteristics of the project under gate group scheduling and taking different emergency measures are analyzed with the water level deviation and stabilization time consumption of the pool as indicators. Moreover, this paper proposes an emergency intervention mode for ice jam events. The results show that using the gate group scheduling after ice jam events will cause a sharp rise in the upstream water level of the pool where the ice jams are located. Also, compared with other emergency measures, the electric heating ice melting measure has less influence on water level, and the de-icing effect is better. Finally, the emergency intervention mode can significantly reduce the maximum water level deviation and shorten the time required to stabilize the water level.
期刊介绍:
Hydrology Research provides international coverage on all aspects of hydrology in its widest sense, and welcomes the submission of papers from across the subject. While emphasis is placed on studies of the hydrological cycle, the Journal also covers the physics and chemistry of water. Hydrology Research is intended to be a link between basic hydrological research and the practical application of scientific results within the broad field of water management.