使用分数驱动的多变量定位模型识别脉冲响应中的季节效应

Q3 Mathematics
Szabolcs Blazsek, A. Escribano, Adrián Licht
{"title":"使用分数驱动的多变量定位模型识别脉冲响应中的季节效应","authors":"Szabolcs Blazsek, A. Escribano, Adrián Licht","doi":"10.1515/jem-2020-0003","DOIUrl":null,"url":null,"abstract":"Abstract For policy decisions, capturing seasonal effects in impulse responses are important for the correct specification of dynamic models that measure interaction effects for policy-relevant macroeconomic variables. In this paper, a new multivariate method is suggested, which uses the score-driven quasi-vector autoregressive (QVAR) model, to capture seasonal effects in impulse response functions (IRFs). The nonlinear QVAR-based method is compared with the existing linear VAR-based method. The following technical aspects of the new method are presented: (i) mathematical formulation of QVAR; (ii) first-order representation and infinite vector moving average, VMA (∞), representation of QVAR; (iii) IRF of QVAR; (iv) statistical inference of QVAR and conditions of consistency and asymptotic normality of the estimates. Control data are used for the period of 1987:Q1 to 2013:Q2, from the following policy-relevant macroeconomic variables: crude oil real price, United States (US) inflation rate, and US real gross domestic product (GDP). A graphical representation of seasonal effects among variables is provided, by using the IRF. According to the estimation results, annual seasonal effects are almost undetected by using the existing linear VAR tool, but those effects are detected by using the new QVAR tool.","PeriodicalId":36727,"journal":{"name":"Journal of Econometric Methods","volume":"10 1","pages":"53 - 66"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/jem-2020-0003","citationCount":"5","resultStr":"{\"title\":\"Identification of Seasonal Effects in Impulse Responses Using Score-Driven Multivariate Location Models\",\"authors\":\"Szabolcs Blazsek, A. Escribano, Adrián Licht\",\"doi\":\"10.1515/jem-2020-0003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract For policy decisions, capturing seasonal effects in impulse responses are important for the correct specification of dynamic models that measure interaction effects for policy-relevant macroeconomic variables. In this paper, a new multivariate method is suggested, which uses the score-driven quasi-vector autoregressive (QVAR) model, to capture seasonal effects in impulse response functions (IRFs). The nonlinear QVAR-based method is compared with the existing linear VAR-based method. The following technical aspects of the new method are presented: (i) mathematical formulation of QVAR; (ii) first-order representation and infinite vector moving average, VMA (∞), representation of QVAR; (iii) IRF of QVAR; (iv) statistical inference of QVAR and conditions of consistency and asymptotic normality of the estimates. Control data are used for the period of 1987:Q1 to 2013:Q2, from the following policy-relevant macroeconomic variables: crude oil real price, United States (US) inflation rate, and US real gross domestic product (GDP). A graphical representation of seasonal effects among variables is provided, by using the IRF. According to the estimation results, annual seasonal effects are almost undetected by using the existing linear VAR tool, but those effects are detected by using the new QVAR tool.\",\"PeriodicalId\":36727,\"journal\":{\"name\":\"Journal of Econometric Methods\",\"volume\":\"10 1\",\"pages\":\"53 - 66\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/jem-2020-0003\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Econometric Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jem-2020-0003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometric Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jem-2020-0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 5

摘要

摘要对于政策决策,在脉冲响应中捕捉季节性影响对于正确规范衡量政策相关宏观经济变量相互作用影响的动态模型非常重要。本文提出了一种新的多元方法,该方法使用分数驱动的准向量自回归(QVAR)模型来捕捉脉冲响应函数(IRF)中的季节效应。将基于非线性QVAR的方法与现有的基于线性VAR的方法进行了比较。提出了新方法的以下技术方面:(i)QVAR的数学公式;(ii)QVAR的一阶表示和无限向量移动平均VMA(∞)表示;(iii)QVAR的IRF;(iv)QVAR的统计推断以及估计的一致性和渐近正态性的条件。控制数据用于1987年第一季度至2013年第二季度,来自以下与政策相关的宏观经济变量:原油实际价格、美国通货膨胀率和美国实际国内生产总值。通过使用IRF,提供了变量之间季节性影响的图形表示。根据估计结果,使用现有的线性VAR工具几乎无法检测到年度季节性影响,但使用新的QVAR工具可以检测到这些影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identification of Seasonal Effects in Impulse Responses Using Score-Driven Multivariate Location Models
Abstract For policy decisions, capturing seasonal effects in impulse responses are important for the correct specification of dynamic models that measure interaction effects for policy-relevant macroeconomic variables. In this paper, a new multivariate method is suggested, which uses the score-driven quasi-vector autoregressive (QVAR) model, to capture seasonal effects in impulse response functions (IRFs). The nonlinear QVAR-based method is compared with the existing linear VAR-based method. The following technical aspects of the new method are presented: (i) mathematical formulation of QVAR; (ii) first-order representation and infinite vector moving average, VMA (∞), representation of QVAR; (iii) IRF of QVAR; (iv) statistical inference of QVAR and conditions of consistency and asymptotic normality of the estimates. Control data are used for the period of 1987:Q1 to 2013:Q2, from the following policy-relevant macroeconomic variables: crude oil real price, United States (US) inflation rate, and US real gross domestic product (GDP). A graphical representation of seasonal effects among variables is provided, by using the IRF. According to the estimation results, annual seasonal effects are almost undetected by using the existing linear VAR tool, but those effects are detected by using the new QVAR tool.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Econometric Methods
Journal of Econometric Methods Economics, Econometrics and Finance-Economics and Econometrics
CiteScore
2.20
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信