von Neumann代数酉群上的概周期函数和弱概周期函数

IF 0.7 4区 数学 Q2 MATHEMATICS
P. Jolissaint
{"title":"von Neumann代数酉群上的概周期函数和弱概周期函数","authors":"P. Jolissaint","doi":"10.7900/jot.2020aug30.2315","DOIUrl":null,"url":null,"abstract":"Let M⊂B(H) be a von Neumann algebra acting on the (separable) Hilbert space H. We first prove that M is finite if and only if, for every x∈M and for all vectors ξ,η∈H, the coefficient function u↦⟨uxu∗ξ|η⟩ is weakly almost periodic on the topological group UM of unitaries in M (equipped with the weak operator topology). The main device is the unique invariant mean on the C∗-algebra WAP(UM) of weakly almost periodic functions on UM. Next, we prove that every coefficient function u↦⟨uxu∗ξ|η⟩ is almost periodic if and only if M is a direct sum of a diffuse, abelian von Neumann algebra and finite-dimensional factors. Incidentally, we prove that if M is a diffuse von Neumann algebra, then its unitary group is minimally almost periodic.","PeriodicalId":50104,"journal":{"name":"Journal of Operator Theory","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2020-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Almost and weakly almost periodic functions on the unitary groups of von Neumann algebras\",\"authors\":\"P. Jolissaint\",\"doi\":\"10.7900/jot.2020aug30.2315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let M⊂B(H) be a von Neumann algebra acting on the (separable) Hilbert space H. We first prove that M is finite if and only if, for every x∈M and for all vectors ξ,η∈H, the coefficient function u↦⟨uxu∗ξ|η⟩ is weakly almost periodic on the topological group UM of unitaries in M (equipped with the weak operator topology). The main device is the unique invariant mean on the C∗-algebra WAP(UM) of weakly almost periodic functions on UM. Next, we prove that every coefficient function u↦⟨uxu∗ξ|η⟩ is almost periodic if and only if M is a direct sum of a diffuse, abelian von Neumann algebra and finite-dimensional factors. Incidentally, we prove that if M is a diffuse von Neumann algebra, then its unitary group is minimally almost periodic.\",\"PeriodicalId\":50104,\"journal\":{\"name\":\"Journal of Operator Theory\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2020-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Operator Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.7900/jot.2020aug30.2315\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Operator Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7900/jot.2020aug30.2315","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设M∧B(H)是作用于(可分离的)希尔伯特空间H上的冯·诺依曼代数。我们首先证明M是有限的当且仅当,对于每个x∈M和对于所有向量ξ,η∈H,系数函数u∈⟨uxu∗ξ|η⟩在M中酉元的拓扑群UM上(具有弱算子拓扑)是弱几乎周期的。主要装置是在C * -代数WAP(UM)上的弱概周期函数的唯一不变平均值。接下来,我们证明每个系数函数u∈uxu∗ξ|η⟩几乎是周期的,当且仅当M是扩散的阿贝尔冯·诺依曼代数和有限维因子的直接和。顺便提一下,我们证明了如果M是一个漫射冯诺依曼代数,那么它的酉群是最小概周期的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Almost and weakly almost periodic functions on the unitary groups of von Neumann algebras
Let M⊂B(H) be a von Neumann algebra acting on the (separable) Hilbert space H. We first prove that M is finite if and only if, for every x∈M and for all vectors ξ,η∈H, the coefficient function u↦⟨uxu∗ξ|η⟩ is weakly almost periodic on the topological group UM of unitaries in M (equipped with the weak operator topology). The main device is the unique invariant mean on the C∗-algebra WAP(UM) of weakly almost periodic functions on UM. Next, we prove that every coefficient function u↦⟨uxu∗ξ|η⟩ is almost periodic if and only if M is a direct sum of a diffuse, abelian von Neumann algebra and finite-dimensional factors. Incidentally, we prove that if M is a diffuse von Neumann algebra, then its unitary group is minimally almost periodic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
12.50%
发文量
23
审稿时长
12 months
期刊介绍: The Journal of Operator Theory is rigorously peer reviewed and endevours to publish significant articles in all areas of operator theory, operator algebras and closely related domains.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信